首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction.  相似文献   

2.
This paper discusses a method for overcoming the problem of weak sinks representing wells that result from spatial discretization effects when using MODPATH, the particle-tracking postprocessor for the ground water flow model MODFLOW. Weak sink cells are model cells that represent a well that does not discharge at a sufficiently large rate to capture all of the flow entering the cell; therefore, flowpaths within these cells cannot be uniquely defined because it is impossible to know whether a given water particle discharges to the well or passes through the cell. Creating a submodel of the well cell by using the nested rediscretization method can eliminate this ambiguity by converting the weak sink cell into a strong sink cell. The method is designed to be run manually for each well and for steady-state conditions. Other advantages, disadvantages, technical considerations, and limitations of the method are presented. Software created for the method consists of five Fortran programs that are operated using a set of instructions. A practical application of the method is presented by using an example wellhead-protection problem that demonstrates that nested rediscretization can provide more accurate particle-tracking results than those obtained by using a coarsely discretized model alone.  相似文献   

3.
A travel time distribution based on a particle-tracking analysis in a ground water model containing weak sinks is often uncertain because whether a particle is discharged or allowed to pass through a weak sink is unresolved by particle-tracking theory. We present a probability-based method to derive an objective travel time distribution in models containing weak sinks. The method discharges a fraction of the particle at the weak sink and allows the remaining fraction to pass through the weak sink. The weight of the discharged fraction depends on the ratio of the sink flux to the influx into the weak sink cell. We tested this approach on a coarse (100 × 100 m) and a fine (25 × 25 m) horizontal resolution regional scale ground water model (34.5 × 24 km). We compared the travel time distributions in a small subcatchment derived from particle-tracking analysis with one derived from a transport model. We found that the particle-tracking analysis with the coarse model underestimated the travel time distribution of the catchment compared to the transport solution or a particle-tracking analysis with the fine model. The underestimation of travel times with the coarse model was a result of a large area covered by sink cells in this model and the more accurate flow patterns simulated by the fine model. The probability-based method presented here compares favorably with a solute transport solution and provides an accurate travel time distribution when used with a fine-resolution ground water model.  相似文献   

4.
Daniel Abrams 《Ground water》2013,51(3):474-478
In low to medium resolution MODFLOW models, the area occupied by sink cells often far exceeds the surface area of the streams they represent. As a result, MODPATH will calculate inaccurate particle traces and transit times. A frequency distribution of transit times for a watershed will also be in error. Such a distribution is used to assess the long‐term impact of nonpoint source pollution on surface waters and wells. Although the inaccuracies for individual particles can only be avoided by increased model grid resolution or other advanced modeling techniques, the frequency distribution can be improved by scaling the particle transit times by an adjustment factor during post‐processing.  相似文献   

5.
We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface–groundwater exchange than standard particle-tracking simulations.  相似文献   

6.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

7.
The recent release of MODFLOW‐USG, which allows model grids to have irregular, unstructured connections, requires a modification of the particle‐tracking algorithm used by MODPATH. This paper describes a modification of the semi‐analytical particle‐tracking algorithm used by MODPATH that allows it to be extended to rectangular‐based unstructured grids by dividing grid cells with multi‐cell face connections into sub‐cells. The new method will be incorporated in the next version of MODPATH which is currently under development.  相似文献   

8.
MODFLOW is one of the most popular groundwater simulation tools available; however, the development of lake modules that can be coupled with MODFLOW is lacking apart from the LAK3 package. This study proposes a new approach for simulating lake - groundwater interaction under steady-state flow, referred to as the sloping lakebed method (SLM). In this new approach, discretization of the lakebed in the vertical direction is independent of the spatial discretization of the aquifer system, which can potentially solve the problem that the lake and groundwater are usually simulated at different scales. The lakebed is generalized by a slant at the bottom of each lake grid cell, which can be classified as fully submerged, dry, and partly submerged. The SLM method accounts for all lake sources and sinks, establishing a governing equation that can be solved using Newton's method. A benchmarking case study was conducted using a modified model setup in the LAK3 user manual. It was found that when there is a sufficient number of layers at the top of the groundwater model, SLM simulates an almost identical groundwater head as the LAK3-based model; when the number of layers decreases, SLM is unaffected while LAK3 may be at a risk of giving unrealistic results. Additionally, the SLM can reflect the relationship between the simulated lake surface area and lake water depth more accurately. Therefore, the SLM method is a promising alternative to the LAK3 package when simulating lake - groundwater interaction.  相似文献   

9.
Jacob Zaidel 《Ground water》2013,51(6):952-959
Known analytical solutions of groundwater flow equations are routinely used for verification of computer codes. However, these analytical solutions (e.g., the Dupuit solution for the steady‐state unconfined unidirectional flow in a uniform aquifer with a flat bottom) represent smooth and continuous water table configurations, simulating which does not pose any significant problems for the numerical groundwater flow models, like MODFLOW. One of the most challenging numerical cases for MODFLOW arises from drying‐rewetting problems often associated with abrupt changes in the elevations of impervious base of a thin unconfined aquifer. Numerical solutions of groundwater flow equations cannot be rigorously verified for such cases due to the lack of corresponding exact analytical solutions. Analytical solutions of the steady‐state Boussinesq equation, associated with the discontinuous water table configurations over a stairway impervious base, are presented in this article. Conditions resulting in such configurations are analyzed and discussed. These solutions appear to be well suited for testing and verification of computer codes. Numerical solutions, obtained by the latest versions of MODFLOW (MODFLOW‐2005 and MODFLOW‐NWT), are compared with the presented discontinuous analytical solutions. It is shown that standard MODFLOW‐2005 code (as well as MODFLOW‐2000 and older versions) has significant convergence problems simulating such cases. The problems manifest themselves either in a total convergence failure or erroneous results. Alternatively, MODFLOW‐NWT, providing a good match to the presented discontinuous analytical solutions, appears to be a more reliable and appropriate code for simulating abrupt changes in water table elevations.  相似文献   

10.
The accuracy with which MODFLOW simulates surface water-groundwater interaction is examined for connected and disconnected losing streams. We compare the effect of different vertical and horizontal discretization within MODFLOW and also compare MODFLOW simulations with those produced by HydroGeoSphere. HydroGeoSphere is able to simulate both saturated and unsaturated flow, as well as surface water, groundwater and the full coupling between them in a physical way, and so is used as a reference code to quantify the influence of some of the simplifying assumptions of MODFLOW. In particular, we show that (1) the inability to simulate negative pressures beneath disconnected streams in MODFLOW results in an underestimation of the infiltration flux; (2) a river in MODFLOW is either fully connected or fully disconnected, while in reality transitional stages between the two flow regimes exist; (3) limitations in the horizontal discretization of the river can cause a mismatch between river width and cell width, resulting in an error in the water table position under the river; and (4) because coarse vertical discretization of the aquifer is often used to avoid the drying out of cells, this may result in an error in simulating the height of the groundwater mound. Conditions under which these errors are significant are investigated.  相似文献   

11.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   

12.
An approach is presented to determine the seasonal variations in travel time in a bank filtration system using a passive heat tracer test. The temperature in the aquifer varies seasonally because of temperature variations of the infiltrating surface water and at the soil surface. Temperature was measured with distributed temperature sensing along fiber optic cables that were inserted vertically into the aquifer with direct push equipment. The approach was applied to a bank filtration system consisting of a sequence of alternating, elongated recharge basins and rows of recovery wells. A SEAWAT model was developed to simulate coupled flow and heat transport. The model of a two‐dimensional vertical cross section is able to simulate the temperature of the water at the well and the measured vertical temperature profiles reasonably well. MODPATH was used to compute flowpaths and the travel time distribution. At the study site, temporal variation of the pumping discharge was the dominant factor influencing the travel time distribution. For an equivalent system with a constant pumping rate, variations in the travel time distribution are caused by variations in the temperature‐dependent viscosity. As a result, travel times increase in the winter, when a larger fraction of the water travels through the warmer, lower part of the aquifer, and decrease in the summer, when the upper part of the aquifer is warmer.  相似文献   

13.
14.
Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.  相似文献   

15.
Noxious weeds threaten the Sheyenne National Grassland (SNG) ecosystem and therefore herbicides have been used for control. To protect groundwater quality, the herbicide application is restricted to areas where the water table is less than 10 feet (3.05 m) below the ground surface in highly permeable soils, or less than 6 feet (1.83 m) below the ground surface in low permeable soils. A local MODFLOW model was extracted from a regional GFLOW analytic element model and used to develop depth‐to‐groundwater maps in the SNG that are representative for the particular time frame of herbicide applications. These maps are based on a modeled groundwater table and a digital elevation model (DEM). The accuracy of these depth‐to‐groundwater maps is enhanced by an artificial neural networks (ANNs) interpolation scheme that reduces residuals at 48 monitoring wells. The combination of groundwater modeling and ANN improved depth‐to‐groundwater maps, which in turn provided more informed decisions about where herbicides can or cannot be safely applied.  相似文献   

16.
Surface water is a scarce resource in Namibia with about sixty percent of Namibia's population dependent on groundwater for drinking purposes. With increasing population, the country faces water challenges and thus groundwater resources need to be managed properly. One important aspect of Integrated Water Resources Management is the protection of water resources, including protection of groundwater from contamination and over-exploitation. This study explores vulnerability mapping as a basic tool for protecting groundwater resources from pollution. It estimates groundwater vulnerability to pollution in the upper Niipele sub-basin of the Cuvelai-Etosha in Northern Namibia using the DRASTIC index. The DRASTIC index uses GIS to estimate groundwater vulnerability by overlaying different spatially referenced hydrogeological parameters that affect groundwater contamination. The study assesses the discontinuous perched aquifer (KDP) and the Ohangwena multi-layered aquifer 1 (KOH-1). For perched aquifers, point data was regionalized by a hydrotope approach whereas for KOH-1 aquifer, inverse distance weighting was used. The hydrotope approach categorized different parts of the hydrogeological system with similar properties into five hydrotopes. The result suggests that the discontinuous perched aquifers are more vulnerable than Ohangwena multi-layered aquifer 1. This implies that vulnerability increases with decreasing depth to water table because contaminants have short travel time to reach the aquifer when they are introduced on land surface. The nitrate concentration ranges between 2 and 288 mg/l in perched aquifers while in Ohangwena multi-layered aquifer 1, it ranges between 1 and 133 mg/l. It was observed that perched aquifers have high nitrate concentrations than Ohangwena 1 aquifer, which correlates well with the vulnerability results.  相似文献   

17.
Steady free-surface seepage in a homogeneous porous aquifer is studied by a conformal mapping of the inversed hodograph (angle) onto the domain in the Riesenkampf plane (slanted-face half-strip or trapezium). Seepage from the water table is caused by evaporation uniformly distributed with a horizontal coordinate. This distributed sink forms a regional trough on the phreatic surface with groundwater moving from the flanks to the trough center on the regional scale and from the water table to the soil surface locally. The free surfaces, streamlines of marked particles, travel times, and Darcian velocity are presented.  相似文献   

18.
Two experiments were conducted in the Carboniferous Limestone aquifer of the Mendip Hills, Somerset, to compare the relative merits of differing groundwater tracers. The tracers employed were lithium acetate, polyethylene powder, Lycopodium spores and the fluorescent dye Pyranine Conc.; all were introduced into the aquifer at stream sinks. The first two tracers were totally unsuccessful. In the two experiments the rates of travel of the fluorescent dye and Lycopodium spores were very similar. Only relative concentrations can be measured from the recovery of spores as opposed to absoute concentration for dye which were determined using a field continuous flow fluorometer. The quantitative dye concentration data can be used with simultaneous measurements of discharge at the spring to deduce the flow geometry of the system; the input, tributary, distributary and maximum discharges in the system and the volume of the underground conduits. Data are presented which indicate that exchange takes place between the flooded conduit, and the surrounding fissured bedrock in a manner analogous to bank storage in rivers flowing on alluvium.In conclusion fluoresent tracers are valuable for the detailed investigation of a single sink to rising system; Lycopodium spores, which can be used to trace several sinks simultaneously, are a valuable technique in exploratory tracing.  相似文献   

19.
Edington D  Poeter E 《Ground water》2006,44(6):826-831
Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low-total accommodation environments and longer travel times in high-total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence.  相似文献   

20.
Robinson MA  Reay WG 《Ground water》2002,40(2):123-131
Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the nontidal portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between < 0.01 to 0.24 m/day, with elevated values associated with discharge areas and areas of convergence along surface water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号