首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   

2.
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.  相似文献   

3.
《Resource Geology》2018,68(1):37-50
The large, newly discovered Lijiagou pegmatite spodumene deposit, is located southeast of the Ke'eryin pegmatite ore field, in the central Songpan–Garze Fold Belt (SGFB), Eastern Tibet. The Lijiagou albite spodumene pegmatites are unzoned, granite‐pegmatites of the subtype LCT (Lithium, Cesium, and Tantalum) and consist of medium‐ to coarse‐grained spodumene, lepidolite, microcline, albite, quartz, muscovite, and accessory amounts of beryl, cassiterite, columbite–tantalite and zircon. Secondary fluid inclusions in quartz and spodumene include two‐phase aqueous inclusions (V + L), mono‐phase vapor inclusions (V); three‐phase CO2‐rich CO2–H2O inclusions (CO2 + V + L) and less abundant liquid inclusions (L). The homogenization temperature of the fluid inclusions are low (257.3 to 204.3°C in early stage, 250.3 to 199.6°C in middle stage, 218.7 to 200.6°C in late stage). Fluid inclusions were formed during the long cooling period from the temperature of the pegmatite emplacement. Liquid–vapor–gas boiling was extensive during the middle and late stages. The salinity of the corresponding stages are 15.4 to 13.0 wt.% NaCl equiv., 12.5 to 9.1 wt.% NaCl equiv. and 9.8 to 7.8 wt.% NaCl equiv., respectively. δ18O values of fluid are 7.2 to 5.2‰, 5.6 to 3.9‰ and 2.7 to −0.2‰ from early to late stages; and δD range from −75.1 to −76.8‰, −59.0 to −73.5‰ and −61.6 to −85.5‰ respectively. The δ13C of CO2 values are −5.6 to −6.6‰, −8.5 to −19.9‰, −11.8 to −18.7‰ from early to late stages, suggesting that CO2 in the fluids were probably sourced from a magmatic system, possibly with some mixing of CO2 dissolved in groundwater. δD and δ18O values of fluid indicate that the fluids were originally magmatic water and mixed with some meteoric water in late stage. The magma evolution sequence in the Ke'eryin orefield, from the central two‐mica granite through the Lijiagou deposit out to the distal pegmatites, with the ages gradually decreasing, indicates that the Ke'eryin complex rocks are the product of multistage magmatic activity. The large Lijiagou spodumene deposit is a typical magmatic, fractional crystallization related pegmatite deposit.  相似文献   

4.
陈勇  周瑶琪  查明  林承焰  王强 《地质论评》2007,53(6):814-823
CH4—H2O体系流体包裹体研究对含油气盆地流体分析和成矿流体研究都有重要的意义。本文详细介绍了H2O、CH4和CH4—H2O体系的拉曼光谱特征及分子作用,分析了CH4—H2O体系热力学特征,同时对CH4—H2O体系流体包裹体拉曼光谱定量分析和计算的方法及步骤进行了叙述。利用人工合成流体包裹体建立甲烷浓度与拉曼特征峰面积比值之间的校正曲线是实现CH4—H2O体系流体包裹体定量分析的基础。盐度对包裹体定量分析的影响最为显著,在恒定甲烷浓度下,甲烷与水的拉曼峰面积比值随着盐度增加而减少。对于流体包裹体封闭体系,随温度升高,液相甲烷浓度增大。校正曲线必须包含对温度和盐度的校正。石英主矿物性质和方位对甲烷浓度定量分析的影响可以忽略。实验研究表明,原位拉曼光谱技术是准确获取流体包裹体中甲烷水合物生成条件的一种有效方法。因此,基于拉曼光谱分析和显微测温分析结果,采用热力学模型可以定量计算CH4—H2O体系流体包裹体的相关参数。  相似文献   

5.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   

6.
The Woxi Au–Sb–W deposit in the western Hunan Province, China, is of hydrothermal vein type characterized by a rare mineral assemblage of stibnite, scheelite and native gold, of which gold fineness ranges from 998.6 to 1000. The mineralization sequence observed in the deposit is, from early to late, coarse‐grained pyrite – scheelite – stibnite – Pb–Sb–S minerals – sphalerite (+ cubanite) – fine‐grained pyrite. Native gold may have precipitated with scheelte. Microthermometric and LA–ICP–MS analyses of fluid inclusions in scheelite, quartz associated with scheelite and stibnite and barren quartz clarified that there may be at least three types of hydrothermal fluids during the vein formation in the Woxi deposit. Scheelite and native gold precipitated from the fluid of high temperature and salinity with high concentrations of metal elements, followed by stibnite precipitation. The later fluid of the highest temperature and salinity with low concentrations of the elements yielded the sphalerite mineralization. The latest fluid of low temperature and salinity with low concentrations of the elements is observed mainly in barren quartz. The remarkably high Au/Ag concentration ratios determined in the fluid inclusions in scheelite might be the reason for the extremely high gold fineness of native gold.  相似文献   

7.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

8.
Abstract Natural, pure CO2 inclusions in quartz and olivine (c. Fo90) were exposed to controlled fH2 conditions at T= 718–728°C and Ptotal= 2 kbar; their compositions were monitored (before and after exposures) by microsampling Raman spectroscopy (MRS) and microthermometry. In both minerals exposed at the graphite–methane buffer (fH2= 73 bar), fluid speciations record the diffusion of hydrogen into the inclusions. In quartz, room-temperature products in euhedral isolated (EI type) inclusions are carbonic phases with molar compositions of c. CO2(60) + CH4(40) plus graphite (Gr) and H2O, whereas anhedral inclusions along secondary fractures (AS type) are Gr-free and contain H2O plus carbonic phases with compositions in the range c. CO2(60) + CH4(40) to CO2(10) + CH4(90). EI type inclusions in olivine evolved to c. CO2(90–95) + CH4(5–10) without Gr, whereas AS type inclusions have a range of compositions from CO2(90) + CH4(10) ± Gr to CH4(50) + H2(50) ± Gr; neither H2O nor any hydrous species was detected by optical microscopy or MRS in the olivine-hosted products. Differences in composition between and among the texturally distinct populations of inclusions in both minerals probably arise from variations in initial fluid densities, as all inclusions apparently equilibrated with the ambient fH2. These relations suggest that compositional variability among inclusions in a given natural sample does not require the entrapment of multiple generations of fluids. In addition, the absence of H2O in the olivine-hosted inclusions would require the extraction of oxygen from the fluids, in which case re-equilibration mechanisms may be dependent on the composition and structure of the host mineral. Many of the same samples were re-exposed to identical P–T conditions using Ar as the pressure medium, yielding ambient fH2= 0.06 bar. In most inclusions, the carbonic fluids returned to pure CO2 and graphite persisted in the products. Reversal of the mechanisms from the prior exposure at fH2= 73 bar did not occur in any inclusions but the AS types in olivine, in which minor CO2 was produced at the expense of CH4 and/or graphite. The observed non-reversibility of previous mechanisms may be attributed to: (1) slower fluid–solid reactions compared to reactions in the homogeneous fluid phase; (2) depressed activities of graphite due to poor ordering; and/or (3) low ambient fO2 at the conditions of the second run.  相似文献   

9.
It is generally thought that garnet in metapelites is produced by continuous reactions involving chlorite or chloritoid. Recent publications have suggested that the equilibrium temperatures of garnet‐in reactions may be significantly overstepped in regionally metamorphosed terranes. The growth of small spessartine–almandine garnet crystals on Mn‐siderite at the garnet isograd in graphitic metapelites in the Proterozoic Black Hills orogen, South Dakota, demonstrates that Mn‐siderite was the principal reactant that produced the initial garnet in the schists. Moreover, the positions of garnet compositions in isobaric, T–(C/H) pseudosections for the schists show that the temperature of the garnet‐in reaction from Mn‐siderite was overstepped minimally at the most. In the Black Hills, garnet was initially produced during regional metamorphism beginning at c. 1755 Ma due to the collision of Wyoming and Superior cratons, and was subsequently partially or fully re‐equilibrated at more elevated temperatures and pressures during intrusion of the Harney Peak Granite (HPG) at c. 1715 Ma. Garnet occurs in graphitic schists in garnet, staurolite and sillimanite zones, the latter being a product of contact metamorphism by HPG. During metamorphism, coexisting fluid contained both CO2 and CH4. In the garnet zone, garnet crystals contain petrographically distinct cores with inclusions of quartz, graphite and other minerals. Centres of the cores have distinctly elevated Y concentrations that mark the positions of garnet nucleation. The elevated Y is thought to have come from the Mn‐siderite onto which Y was probably absorbed during precipitation in an ocean. In the upper garnet and staurolite zones, the cores were overgrown by inclusion‐poor mantles. Mantles are highly zoned and have more elevated Fe and Mg and lower Mn and Ca than cores. The growth of mantles is attributed to late‐orogenic heating by leucogranite magmas and attendant influx of H2O that caused consumption of graphite in rock matrices. A portion of the Proterozoic terrane that includes the HPG is surrounded by four large faults. In this ‘HPG block’, garnet is inclusion‐poor and its composition does not preserve its early growth history. This garnet appears to have re‐equilibrated by internal diffusion of its major components and/or recrystallization of an earlier inclusion‐rich garnet. It has equilibrated within the kyanite stability range, and together with remnant kyanite in the high‐strain aureole of the HPG, indicates that the HPG block had a ≥6 kbar history. The HPG block has undergone decompression during emplacement of the HPG. The decompression is evident in occurrences of retrograde andalusite and cordierite in the thermal aureole of the HPG. The data support a polybaric metamorphic history of the Black Hills orogen with different segments of the orogen having their own clockwise P–T–t paths.  相似文献   

10.
We report fluid inclusion data for skarn, formed at the contact between Hercynian granitoids and dolomite of the Proterozoic Bayan Obo Group, in the vicinity of Bayan Obo REE–Nb–Fe deposit, Inner Mongolia, China. Three types of fluid inclusions are identified: two-phase CH4-rich, three-phase liquid–vapour–solid and two-phase aqueous inclusions. Using microthermometry and laser Raman microprobe analysis to calculate isochores for CH4-bearing inclusions, we estimate fluid trapping conditions at T=280 to 344 °C and P<1 to 2.3 kbar. Such conditions are compatible with formation of CH4 inclusions as a result of reaction between graphite in the country rocks (black slate sequence) and fluids derived from magma. The lack of carbonaceous material in the inclusions supports the hypothesis that CH4 was generated during fluid migration rather than by in situ reaction. In contrast to the skarn, and despite the fact that similar graphite-bearing slates are found in the host rocks, no CH4-bearing inclusions have been so far reported from Bayan Obo REE ores. We therefore conclude that the skarn-forming fluids in the contact aureole of the Hercynian granitoids were not involved at any stage in the formation of the Bayan Obo deposit.  相似文献   

11.
CH4-H2O体系流体包裹体均一过程激光拉曼光谱定量分析   总被引:6,自引:2,他引:4  
对南黄海盆地二叠纪地层中某石英脉中的CH4-H2O体系流体包裹体均一过程进行了激光拉曼光谱定量分析。利用甲烷与水的拉曼峰面积比值计算不同温度下流体包裹体中水溶液相中甲烷的浓度,除了在100℃附近出现最小值,随温度增加甲烷浓度呈指数增大。包裹体在214℃完全均一,均一时甲烷的浓度为0·1347mol/L。同时利用甲烷的拉曼特征对流体包裹体均一过程的内压变化作了分析。压力变化可以分为三个区间:19~100℃,随温度升高压力增大;100~150℃压力随温度升高减小;150℃之后压力迅速增大。均一温度下的内压为21·92MPa。流体包裹体内压的变化主要是由甲烷溶解行为和封闭体系的热力学特征决定的。实验表明激光拉曼光技术可以作为定量分析含甲烷流体包裹体的一种有效方法。  相似文献   

12.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

13.
对皖南地区泾县昌桥剖面的二叠系孤峰组硅质页岩裂缝石英脉中流体包裹体进行了显微激光拉曼光谱测试、热力学温度测定及拉曼光谱图谱解析,观测到了高密度甲烷包裹体。利用甲烷包裹体的拉曼散射峰v1位移2910.6~2911.2 cm-1,计算得到甲烷包裹体密度为0.2295~0.2618 g/cm3,具有高密度甲烷包裹体特征。含甲烷组分的气液两相盐水包裹体均一温度分布在216.8~242.3℃。由于气液两相盐水包裹体与甲烷包裹体是共生的,通过状态方程热力学计算高密度甲烷包裹体在共生气液两相盐水包裹体最小温度216.8℃的捕获压力为76~95 MPa。对甲烷流体包裹体密度和捕获压力的计算,揭示了区域内二叠系孤峰组高演化程度的硅质页岩在地史演化过程中存在高压甲烷流体产出的证据,为开展皖南地区二叠系页岩气勘探评价提供了科学依据。   相似文献   

14.
The Xiuwenghala gold deposit is located in the Beishan Orogen of the southern Central Asian Orogenic Belt. The vein/lenticular gold orebodies are controlled by Northeast‐trending faults and are hosted mainly in the brecciated/altered tuff and rhyolite porphyry of the Lower Carboniferous Baishan Formation. Metallic minerals include mainly pyrite and minor chalcopyrite, arsenopyrite, galena, and sphalerite, whilst nonmetallic minerals include quartz, chalcedony, sericite, chlorite, and calcite. Hydrothermal alterations consist of silicic, sericite, chlorite, and carbonate. Alteration/mineralization processes comprise three stages: pre‐ore silicic alteration (Stage I), syn‐ore quartz‐chalcedony‐polymetallic sulfide mineralization (Stage II), and post‐ore quartz‐calcite veining (Stage III). Fluid inclusions (FIs) in quartz and calcite are dominated by L‐type with minor V‐type and lack any daughter mineral‐bearing or CO2‐rich/‐bearing inclusions. From Stages I to III, the FIs homogenized at 240–260°C, 220–250°C, and 150–190°C, with corresponding salinities of 2.9–10.9, 3.2–11.1, and 2.9–11.9 wt.% NaCl eqv., respectively. The mineralization depth at Xiuwenghala is estimated to be relatively shallow (<1 km). FI results indicate that the ore‐forming fluids belong to a low to medium‐temperature, low‐salinity, and low‐density NaCl‐H2O system. The values decrease from Stage I to III (3.7‰, 1.7–2.4‰, and ?1.7 to 0.9‰, respectively), and a similar trend is found for their values (?104 to ?90‰, ?126 to ?86‰, and ?130 to ?106‰, respectively). This indicates that the fluid source gradually evolved from magmatic to meteoric. δ34S values of the hydrothermal pyrites (?3.0 to 0.0‰; avg. ?1.1‰) resemble those of typical magmatic/mantle‐derived sulfides. Pyrite Pb isotopic compositions (206Pb/204Pb = 18.409–18.767, 207Pb/204Pb = 15.600–15.715, 208Pb/204Pb = 38.173–38.654) are similar to those of the (sub)volcanic ore host, indicating that the origin of ore‐forming material was mainly the upper crustal (sub)volcanic rocks. Integrating evidence from geology, FIs, and H–O–S–Pb isotopes, we suggest that Xiuwenghala is best classified as a low‐sulfidation epithermal gold deposit.  相似文献   

15.
Garnet brought to the surface by late Miocene granitoids at La Galite Archipelago (Central Mediterranean, Tunisia) contains abundant primary melt and fluid inclusions. Microstructural observations and mineral chemistry define the host garnet as a peritectic phase produced by biotite incongruent melting at ~800 °C and 0.5 GPa, under fluid‐present conditions. The trapped melt is leucogranitic with an unexpected metaluminous and almost peralkaline character. Fluid inclusions are one phase at room temperature, and contain a CO2‐dominated fluid, with minor H2O, N2 and CH4. Siderite and an OH‐bearing phase were identified by Raman and IR spectroscopy within every analysed inclusion, and are interpreted as products of a post‐entrapment carbonation/hydration reaction between the fluid and the host during cooling. The fluid present during anatexis is therefore inferred to have been originally richer in both H2O and CO2. The production of anatectic melt with a metaluminous signature can be explained as the result of partial melting of relatively Al‐poor protoliths assisted by CO2‐rich fluids.  相似文献   

16.
Meta‐anorthosite bodies are typical constituents of the Neoproterozoic Eastern Granulites in Tanzania. The mineral assemblage (and accessory components) is made up of clinopyroxene, garnet, amphibole; scapolite, epidote, biotite, rutile, titanite, ilmenite and quartz. Within the feldspar‐rich matrix (70–90% plagioclase), mafic domains with metamorphic corona textures were used for P–T calculations. Central parts of these textures constitute high‐Al clinopyroxene – which is a common magmatic mineral in anorthosites – and is therefore assumed to be a magmatic relict. The clinopyroxene rims have a diopsidic composition and are surrounded by a garnet corona. Locally the pyroxene is surrounded by amphibole and scapolite suggesting that a mixed CO2–H2O fluid was present during their formation. Thermobarometric calculations give the following conditions for the metamorphic peak of the individual meta‐anorthosite bodies: Mwega: 11–13 kbar, 850–900 °C; Pare Mountains: 12–14 kbar, 850–900 °C; Uluguru Mountains: 12–14 kbar, 850–900 °C. The P–T evolution of these bodies was modelled using pseudosections. The amount and composition of the metamorphic fluid and <0.5 mol.% fluid in the bulk composition is sufficient to produce fluid‐saturated assemblages at 10 kbar and 800 °C. Pseudosection analysis shows that the corona textures most likely formed under fluid undersaturated conditions or close to the boundary of fluid saturation. The stabilities of garnet and amphibole are dependent on the amount of fluid present during their formation. Mode isopleths of these minerals change their geometry drastically between fluid‐saturated and fluid‐undersaturated assemblages. The garnet coronae developed during isobaric cooling following the metamorphic peak. The cooling segment is followed by decompression as indicated by the growth of amphibole and plagioclase. The estimated of the metamorphic fluid is ~0.3–0.5. Although the meta‐anorthosites have different formation ages (Archean and Proterozoic) they experienced the same Pan‐African metamorphic overprint with a retrograde isobaric cooling path. Similar P–T evolutionary paths are known from the hosting granulites. The presented data are best explained by a tectonic model of hot fold nappes that brought the different aged anorthosites and surrounding rocks together in the deep crust followed by an isobaric cooling history.  相似文献   

17.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

18.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   

19.
A combined oxygen‐isotope and fluid‐inclusion study has been carried out on high‐ and ultrahigh‐pressure metamorphic (HP/UHPM) eclogites and garnet clinopyroxenite from the Dabie‐Sulu terranes in eastern China. Coesite‐bearing eclogites/garnet clinopyroxenite and quartz eclogites have a wide range in whole‐rock δ18OVSMOW, from 0 to 11‰. The high‐T oxygen‐isotope fractionations preserved between quartz and garnet preclude significant retrograde isotope exchange during exhumation, and the wide range in whole‐rock oxygen‐isotope composition is thought to be a presubduction signature of the precursors. Aqueous fluids with variable salinities and gas species (N2‐, CO2‐, or CH4‐rich), are trapped as primary inclusions in garnet, omphacite and epidote, and in quartz blebs enclosed within eclogitic minerals. In high‐δ18O HP/UHPM rocks from Hujialin and Shima, high‐salinity brine and/or N2 inclusions occur in garnet porphyroblasts, which also contain inclusions of coesite, Cl‐rich blue amphibole and dolomite. In contrast, in low‐δ18O eclogites from Qinglongshan and Huangzhen, the Cl concentrations in amphibole are very low, < 0.2 wt.%, and low‐salinity aqueous inclusions occur in quartz inclusions in epidote porphyroblasts and in epidote cores. These low‐salinity fluid inclusions are believed to be remnants of meteoric water, although the fluid composition was modified during pre‐ and syn‐peak HP/UHPM. Eclogites at Houshuichegou and Hetang contain CH4‐rich fluid inclusions, coexisting with high‐salinity brine inclusions. Methane was probably formed under the influence of CO2‐rich aqueous fluids during serpentinisation of mantle‐derived peridotites prior to or during plate subduction. Remnants of premetamorphic low‐ to high‐salinity aqueous fluid with minor N2 and/or other gas species preserved in the Dabie‐Sulu HP/UHPM eclogites and garnet clinopyroxenite indicate a great diversity of initial fluid composition in the precursors, implying very limited fluid–rock interaction during syn‐ and post‐peak HP/UHPM.  相似文献   

20.
Petroleum and aqueous fluid inclusions from the Encantada–Buenavista fluorite mineralized zone in northern Mexico were analyzed by microthermometry, UV fluorescence, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and Confocal Scanning Laser Microscopy (CSLM) to evaluate the geochemical evolution of the mineralizing fluids. Two-phase (petroleum or brine+vapor) and three-phase (petroleum+brine+vapor) inclusions are described. Aqueous and petroleum-rich inclusions commonly occur in the same plane. Vapor-decrepitated and stretched fluid inclusions are present. A low-salinity methane-saturated fluid and a high salinity-fluid with highly variable methane contents are recognized. H2S is not quantified but is always detected in close association with methane. Petroleum inclusions are of two types: a low methane petroleum fluid (20 mol%) with low Th (60 °C) and a petroleum fluid with a methane of content near 30 mol% and a Th of 90 °C.Pressure and temperature diagrams for the aqueous and petroleum inclusions show three main intersects that allow PTX reconstruction of fluid evolution at La Encantada–Buenavista. A CH4- and H2S-rich low-salinity brine was mixed with oil that migrated under hydrostatic conditions with a thermal gradient of 70 °C/km. The arrival and mixing of a high-salinity aqueous fluid produced overpressure to 300 bars. A return to hydrostatic conditions was accompanied by an increase in the thermal gradient.The brine related to the fluorite orebodies appears to have a genetic relationship with the brines reported from the Jurassic petroleum basins located west of the fluorite bodies and similarities with reported fluids from Mississippi Valley type deposits. It is interpreted that the fluorine-rich fluids migrated toward the platform margins during the mid-Tertiary (30 to 32 Ma) using extension zones related to Basin and Range tectonism. Mixing of two different brines was responsible for precipitation and mineralization. Heat from magmas, related to tectonic extension, caused decrepitation and changes in the shape of fluid inclusions near the contact zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号