首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract— The L6 ordinary chondrite Villalbeto de la Peña fall occurred on January 4, 2004, at 16: 46: 45 ± 2 s UTC. The related daylight fireball was witnessed by thousands of people from Spain, Portugal, and southern France, and was also photographed and videotaped from different locations of León and Palencia provinces in Spain. From accurate astrometric calibrations of these records, we have determined the atmospheric trajectory of the meteoroid. The initial fireball velocity, calculated from measurements of 86 video frames, was 16.9 ± 0.4 km/s. The slope of the trajectory was 29.0 ± 0.6° to the horizontal, the recorded velocity during the main fragmentation at a height of 27.9 ± 0.4 km was 14.2 ± 0.2 km/s, and the fireball terminal height was 22.2 ± 0.2 km. The heliocentric orbit of the meteoroid resided in the ecliptic plane (i = 0.0 ± 0.2°), having a perihelion distance of 0.860 ± 0.007 AU and a semimajor axis of 2.3 ± 0.2 AU. Therefore, the meteorite progenitor body came from the Main Belt, like all previous determined meteorite orbits. The Villalbeto de la Peña fireball analysis has provided the ninth known orbit of a meteorite in the solar system.  相似文献   

2.
The petrology and mineralogy of shock melt veins in the L6 ordinary chondrite host of Villalbeto de la Peña, a highly shocked, L chondrite polymict breccia, have been investigated in detail using scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electron probe microanalysis. Entrained olivine, enstatite, diopside, and plagioclase are transformed into ringwoodite, low‐Ca majorite, high‐Ca majorite, and an assemblage of jadeite‐lingunite, respectively, in several shock melt veins and pockets. We have focused on the shock behavior of diopside in a particularly large shock melt vein (10 mm long and up to 4 mm wide) in order to provide additional insights into its high‐pressure polymorphic phase transformation mechanisms. We report the first evidence of diopside undergoing shock‐induced melting, and the occurrence of natural Ca‐majorite formed by solid‐state transformation from diopside. Magnesiowüstite has also been found as veins injected into diopside in the form of nanocrystalline grains that crystallized from a melt and also occurs interstitially between majorite‐pyrope grains in the melt‐vein matrix. In addition, we have observed compositional zoning in majorite‐pyrope grains in the matrix of the shock‐melt vein, which has not been described previously in any shocked meteorite. Collectively, all these different lines of evidence are suggestive of a major shock event with high cooling rates. The minimum peak shock conditions are difficult to constrain, because of the uncertainties in applying experimentally determined high‐pressure phase equilibria to complex natural systems. However, our results suggest that conditions between 16 and 28 GPa and 2000–2200 °C were reached.  相似文献   

3.
Abstract— An impressive daylight fireball was observed from Spain, Portugal, and the south of France at 16h46m45s UTC on January 4, 2004. The meteoroid penetrated into the atmosphere, generating shock waves that reached the ground and produced audible booms. The associated airwave was recorded at a seismic station located 90 km north of the fireball trajectory in Spain, and at an infrasound station in France located 750 km north‐east of the fireball. The absolute magnitude of the bolide has been determined to be ?18 ± 1 from a casual video record. The energy released in the atmosphere determined from photometric, seismic, and infrasound data was about 0.02 kilotons (kt). A massive fragmentation occurred at a height of 28 ± 0.2 km, resulting in a meteorite strewn field of 20 × 6 km. The first meteorite specimen was found on January 11, 2004, near the village of Villalbeto de la Peña, in northern Palencia (Spain). To date, about 4.6 kg of meteorite mass have been recovered during several recovery campaigns. The meteorite is a moderately shocked (S4) L6 ordinary chondrite with a cosmic‐ray‐exposure age of 48 ± 5 Ma. Radioisotope analysis shows that the original body had a mass of 760 ± 150 kg, which is in agreement with the estimated mass obtained from photometric and seismic measurements.  相似文献   

4.
Abstract– A metamorphosed lithic clast was discovered in the CM chondrite Grove Mountains 021536, which was collected in the Antarctica by the Chinese Antarctic Research Exploration team. The lithic clast is composed mainly of Fe‐rich olivine (Fo62) with minor diopside (Fs9.7–11.1Wo48.3–51.6), plagioclase (An43–46.5), nepheline, merrillite, Al‐rich chromite (21.8 wt% Al2O3; 4.43 wt% TiO2), and pentlandite. Δ17O values of olivine in the lithic clast vary from ?3.9‰ to ?0.8‰. Mineral compositions and oxygen isotopic compositions of olivine suggest that the lithic clast has an exotic source different from the CM chondrite parent body. The clast could be derived from strong thermal metamorphism of pre‐existing chondrule that has experienced low‐temperature anhydrous alteration. The lithic clast is similar in mineral assemblage and chemistry to a few clasts observed in oxidized CV3 chondrites (Mokoia and Yamato‐86009) and might have been derived from the interior of the primitive CV asteroid. The apparent lack of hydration in the lithic clast indicates that the clast accreted into the CM chondrite after hydration of the CM components.  相似文献   

5.
Abstract– Northwest Africa (NWA) 5298 is an evolved basaltic shergottite that has bulk characteristics and mineral compositions consistent with derivation from an oxidized reservoir in Mars. Chemically zoned clinopyroxene (64.5%, augite and pigeonite), with interstitial lath‐shaped plagioclase (29.4%, An40 to An55), constitutes the bulk of this meteorite. The plagioclase has been converted by shock to both isotropic maskelynite and spherulitic, birefringent feldspar representing a quenched vesicular melt. The remainder of the rock consists of minor amounts of Fe‐Ti oxides (ilmenite and titanomagnetite), phosphates (merrillite and apatite), silica polymorph, fayalite, pyrrhotite, baddeleyite, and minor hot desert weathering products (calcite and barite). Oxygen fugacity derived from Fe‐Ti oxide thermobarometry is close to the quartz‐fayalite‐magnetite (QFM) buffer indicating that the late stage evolution of this magma occurred under more oxidizing condition than those recorded in most other shergottites. Merrillite contains the largest abundances of rare earth elements (REE) of all phases, thereby controlling the REE budget in NWA 5298. The calculated bulk rock REE pattern normalized to CI chondrite is relatively flat. The evolution of the normalized REE patterns of the bulk rock, clinopyroxene, plagioclase, and phosphate in NWA 5298 is consistent with closed‐system chemical behavior with no evidence of crustal contamination or postcrystallization disturbance of the REE contents of these phases.  相似文献   

6.
High‐precision oxygen three‐isotope ratios were measured for four mineral phases (olivine, low‐Ca and high‐Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOCs) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1–S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 μm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low‐Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In type 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass‐dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low‐Ca and high‐Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700–1000 °C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.  相似文献   

7.
Abstract— Compositional and textural relationships of shock‐melted glasses in the Allan Hills (ALH) 84001 meteorite have been examined by optical microscopy, electron microprobe analysis, and compositional mapping. The feldspathic and silica glasses exhibit features which constrain the relative timing of shock events and carbonate deposition in ALH 84001. The feldspathic glasses are stoichiometric and have compositions plausibly described as forming from igneous plagioclase (An27–39Ab58–68Or3–7) or sanidine (Or51Ab46An3), or from a mixture of these phases (mixed‐feldspar glasses). These observations argue against prior interpretations of feldspathic glasses as unflowed maskelynite, hydrothermal precipitates or alteration products, or shock melts that have undergone alkali volatilization. Carbonate was deposited around previously formed mixed‐feldspar glass clasts, suggesting that carbonate deposition occurred after the shock event that formed the granular bands (crushed zones) in this meteorite. SiO2‐rich glasses appear to be silica remobilized during shock, with little addition of other material. A petrogenetic history of ALH 84001 consistent with the observations of feldspathic and silica glasses is (1) igneous crystallization and cumulate formation; (2) a pre‐carbonate shock event that formed the granular bands (crushed zones) and sheared chromites, and melted igneous plagioclase and sanidine to form mixed‐feldspar glasses; (3) carbonate and silica deposition in the granular bands (veining of plagioclase glasses by SiO2 and deposition of carbonate around mixed‐feldspar and plagioclase glass clasts); (4) a post‐carbonate shock event that resulted in invasion of carbonate by feldspathic melts, shock faulting and decarbonation of carbonate, high‐temperature mobilization of silica melts, and minor dissolution of orthopyroxene by silica melts.  相似文献   

8.
The principal data are collected about the fall and the distribution of the fragments of the Valdinizza, Italy, meteorite. A complete individual, weighing 872 g, preserved in the United States National Museum, Washington, D. C., is described in some detail. The mineralogical composition is olivine, Fa25; hypersthene, Fs23; plagioclase, An10; maskelynite; nickel-iron; troilite; chromite; ilmenite and possibly a phosphate mineral. Valdinizza is a fairly typical hypersthene chondrite, belonging to the type 6 chondrites of Van Schmus and Wood (1967); its structure shows evidence of a period of high-temperature recrystallization; interesting features of shock-metamorphism are notable, the microtexture deformations suggesting a high level of stress  相似文献   

9.
On June 12, 2004, a meteorite passed through Earth's atmosphere and landed under the television in the living room of a house in Auckland, New Zealand. Textural characteristics, the chemistry of olivine (Fa23–24) and orthopyroxene (Fs20.7), and the bulk rock triple oxygen isotopes (δ17O + 3.1; δ18O + 4.2‰) from the interior of the completely unweathered (W0) 1.3 kg meteorite, hereafter referred to as Auckland, suggest it to be a strongly metamorphosed fragment from the interior of a low iron ordinary chondrite (L6) parent asteroid. The occurrence of maskelynite but shock fracturing of olivine and pyroxene indicates Auckland experienced extreme shock metamorphism (S5), likely during Ordovician fragmentation of the asteroid parent. The fusion crust consists of three zones: (1) an innermost zone containing narrow Fe-Ni-S-bearing veins that migrated along pre-existing shock fractures in olivine and pyroxene; (2) a middle zone in which the meteorite partially melted to form a silicate glass and immiscible blebs of metal and troilite, and is accompanied by unmelted silicate minerals; and (3) an approximately 0.1 mm wide vesicular-rich outermost layer that largely melted, volatilizing sulfides, before quenching to form glass and olivine. Oxygen isotope values of the bulk rock and/or maskelynite of melted rim and modified substrate are 2–3‰ greater than the meteorite interior and indicate that up to 19% of terrestrial atmospheric O2 was incorporated into the fusion crust during the formation. The fusion crust migrated inwards as ablation occurred, enabling melting, migration, and re-precipitation ± loss of sulfide and metal components, with the prominent glassy rim therefore forming from an already chemically modified zone.  相似文献   

10.
This contribution addresses the role of chemical composition, pressure, temperature, and time during the shock transformation of plagioclase into diaplectic glass—i.e., maskelynite. Plagioclase of An50‐57 and An94 was recovered as almost fully isotropic maskelynite from room temperature shock experiments at 28 and 24 GPa. The refractive index (RI) decreased to values of a quenched mineral glass for An50‐57 plagioclase shocked to 45 GPa and shows a maximum in An94 plagioclase shocked to 41.5 GPa. The An94 plagioclase experiments can serve as shock thermobarometer for lunar highland rocks and howardite, eucrite, and diogenite meteorites. Shock experiments at 28, 32, 36, and 45 GPa and initial temperatures of 77 and 293 K on plagioclase (An50‐57) produced materials with identical optical and Raman spectroscopic properties. In the low temperature (<540 K) region, the formation of maskelynite is entirely controlled by shock pressure. The RI of maskelynite decreased in heating experiments of 5 min at temperatures of >770 K, thus, providing a conservative upper limit for the postshock temperature history of the rock. Although shock recovery experiments and static pressure experiments differ by nine orders of magnitude in typical time scale (microseconds versus hours), the amorphization of plagioclase occurs at similar pressure and temperature conditions with both methods. The experimental shock calibration of plagioclase can, together with other minerals, be used as shock thermobarometer for naturally shocked rocks.  相似文献   

11.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

12.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

13.
The fall of a meteorite shower in Parambú, Ceará State, Brazil, is described. Parambú is an L-group chondrite (Urey and Craig, 1953). The mineralogical composition is olivine Fa28. ortho- and clinopyroxenes, plagioclase, maskelynite, whitlockite, nickel-iron, troilite, chromite, and ilmenite. The structure of Parambú is characteristically polymict and shows an advanced brecciation. Interesting features of metamorphism are notable, with good evidence of shock.  相似文献   

14.
Abstract— The Yaringie Hill meteorite is a new H5 ordinary chondrite found in the Gawler Ranges, South Australia. The meteorite, which shows only minor signs of terrestrial weathering, is predominantly composed of olivine (Fa17.2), orthopyroxene (Fs15.1Wo1.1), and three distinct phases of nickeliferous iron metal (kamacite, taenite, tetrataenite). Other minerals include troilite, plagioclase (Ab81An16Or3), clinopyroxene (En52Wo42Fs6), chlorapatite, merrillite, ilmenite, and native copper. Three types of spinel with distinctive textures (coarse, skeletal aggregates, rounded aggregates) and with compositions close to the join MgAl2O4‐FeCr2O4 are also present. Chondrules within the Yaringie Hill meteorite, which often have poorly defined boundaries, are placed in a recrystallized matrix. Shock indicators suggest that the meteorite experienced only weak shock metamorphism (S3).  相似文献   

15.
We report and describe an L6 ordinary chondrite fall that occurred in Ardón, León province, Spain (longitude 5.5605°W, latitude 42.4364°N) on July 9th, 1931. The 5.5 g single stone was kept hidden for 83 yr by Rosa González Pérez, at the time an 11 yr old who had observed the fall and had recovered the meteorite. According to various newspaper reports, the event was widely observed in Northern Spain. Ardón is a very well‐preserved, fresh, strongly metamorphosed (petrologic type 6), and weakly shocked (S3) ordinary chondrite with well‐equilibrated and recrystallized minerals. The mineral compositions (olivine Fa23.7±0.3, low‐Ca pyroxene Fs20.4±0.2Wo1.5±0.2, plagioclase An10.3±0.5Ab84.3±1.2), magnetic susceptibility (log χ = 4.95 ± 0.05 × 10?9 mkg?1), bulk density (3.49 ± 0.05 g   cm?3), grain density (3.58 ± 0.05 g   cm?3), and porosity (2.5 vol%) are typical for L6 chondrites. Short‐lived radionuclides confirm that the meteorite constitutes a recent fall. The 21Ne and 38Ar cosmic ray exposure ages are both about 20–30 Ma, similar to values for many other L chondrites. The cosmogenic 22Ne/21Ne ratio indicates that preatmospheric Ardón was a relatively large body. The fact that the meteorite was hidden in private hands for 83 yr makes one wonder if other meteorite falls may have experienced the same fate, thus possibly explaining the anomalously low number of falls reported in continental Spain in the 20th century.  相似文献   

16.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   

17.
Two new ordinary chondrites were found about 40 km west of Albuquerque, New Mexico. Correo is an H4 chondrite with distinct chondrules and major olivine (Fo81.4), orthopyroxene (En82.3) and plagioclase (An12). Suwanee Spring is an L5 chondrite with few distinct chondrules and a highly recrystallized matrix. Major minerals are olivine (Fo75.4), orthopyroxene (En77.7) and plagioclase (An9). The metallic Ni-Fe phases of both meteorites are typical of slowly-cooled ordinary chondrites.  相似文献   

18.
We performed in situ oxygen three‐isotope measurements of chondrule olivine, pyroxenes, and plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies. NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope ratios of olivine and pyroxenes plot along a slope‐1 line in the oxygen three‐isotope diagram, except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is excluded, olivine, and low‐ and high‐Ca pyroxenes are indistinguishable regarding Δ17O values. Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass‐dependent fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was caused probably by exchange of plagioclase with 16O‐poor fluids on the CV parent body. Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at moderately high dust enrichment factors (50× to 150× CI dust relative to solar abundances); estimates for water ice in the chondrule precursors range from 0.2× to 0.6× the nominal amount of ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only moderately high dust‐enriched disk in the CV chondrule‐forming region.  相似文献   

19.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

20.
Ancient, SiO2‐rich achondrites have previously been proposed to have formed by disequilibrium partial melting of chondrites. Here, we test the alternative hypothesis that these achondrites formed by fractional crystallization of impact melts of Rumuruti (R) chondrites. We identified two new melt clasts in R chondrites, one in Pecora Escarpment (PCA) 91241 and one in LaPaz Icefield (LAP) 031275. We analyzed major, minor, and trace element concentrations, as well as oxygen isotopes, of these two clasts and a third one that had been previously recognized (Bischoff et al. 2011) as an impact melt in Dar al Gani (DaG) 013. The melt clast in PCA 91241 is an R chondrite impact melt closely resembling the one previously recognized in DaG 013. The melt clast in LAP 031275 has an L chondrite provenance. We show that SiO2‐rich melts could form from the mesostases of R chondrite impact melts. However, their CI‐normalized rare earth element patterns are flat, whereas those of ancient SiO2‐rich achondrites (Day et al. 2012; Srinivasan et al. 2018) and those of disequilibrium partial melts of chondrites (Feldstein et al. 2001) have positive Eu anomalies from preferential melting of plagioclase. Thus, we conclude that ancient SiO2‐rich achondrites were probably formed by disequilibrium partial melting (due to an internal heat source on their parent bodies), rather than from impact melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号