首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Samples of all five of the known C1 chondrites have been analyzed thermomagnetically. The only magnetic phase found in four of the chondrites (Alais, Ivuna, Orgueil, Tonk) was magnetite containing less than 6% nickel. The Revelstoke C1 chondrite contains essentially Ni-free Fe3O4 as the predominant phase; however, a small amount of a thermally unstable iron compound (presumably FeS) is additionally present. Estimates of the weight percentage of magnetite, based on saturation moments, are: Alais, 5.3 ± 0.4%; Ivuna, 12.2 ± 0.9%; Orgueil, 11.9 ± 0.8%; Revelstoke, 7.2 ± 0.5%; and Tonk, 9.4 ± 0.6%. The first three estimates are based on multiple analyses and are considered to be grossly representative of the meteorites as a whole. The last two estimates are based on single-sample measurements and should be considered only in that context. The magnetite of the Alais sample appears to be somewhat unusual inasmuch as it is inhomogeneously distributed, and its content is only about half that of the average C1 chondrite.  相似文献   

2.
High-precision Nb, Ta, Zr, Hf, Sm, Nd and Lu concentration data of depleted mantle rocks from the Balmuccia peridotite complex (Ivrea Zone, Italian Alps) were determined by isotope dilution using multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) and thermal ionisation mass spectrometry (TIMS). The Zr/Hf ratios of all investigated samples from the Balmuccia peridotite complex are significantly lower than the chondritic value of 34.2, and the most depleted samples have Zr/Hf ratios as low as 10. Correlated Zr/Hf ratios and Zr abundances of the lherzolites preserve the trend of a mantle residue that has been depleted by fractional melting. This trend confirms experimental studies that predict Hf to behave more compatibly than Zr during mantle melting. Experimentally determined partition coefficients imply that the major Zr and Hf depletion most likely occurred in the spinel stability field, with (DZr/DHf)cpx≈0.5, and not in the garnet stability field, where (DZr/DHf)grt is probably close to one. However, minor amounts of melting must have also occurred in a garnet facies mantle, as indicated by low Sm/Lu ratios in the Balmuccia peridotites. The Nb/Ta ratios of most lherzolites are subchondritic and vary only from 7 to 10, with the exception of three samples that have higher Nb/Ta ratios (18–24). The overall low Nb/Ta ratios of most depleted mantle rocks confirm a higher compatibility of Ta in the mantle. The uniform Nb/Ta ratios in most samples imply that even in ‘depleted’ mantle domains the budget of the highly incompatible Nb and Ta is controlled by enrichment processes. Such a model is supported by the positive correlation of Zr/Nb with the Zr concentration. However, the overall enrichment was weak and did barely affect the moderately incompatible elements Zr and Hf. The new constraints from the partitioning behaviour of Zr–Hf and Nb–Ta provide important insights into processes that formed the Earth’s major silicate reservoirs. The correlation of Zr/Hf and Sm/Nd in depleted MORB can be assigned to previous melting events in the MORB source. However, such trends were unlikely produced during continental crust formation processes, where Sm/Nd and Zr/Hf are decoupled. The different fractionation behaviour of Zr/Hf and Sm/Nd in the depleted mantle (correlated) and the crust (decoupled) indicates that crustal growth by a simple partial melting process in the mantle has little effect on the mass budget of LREE and HFSE between crust and mantle. A more complex source composition, similar to that of modern subduction rocks, is needed to fractionate the LREE, but not Zr/Hf and the HREE.  相似文献   

3.
The abundances of zirconium and hafnium have been determined in nine stony meteorites by a new, precise neutron-activation technique. The Zr/Hf abundance ratios for the chondrites vary in a rather narrow range, consistent with previously published observations from our group. Replicate analyses of new, carefully selected clean interior samples of the C1 chondrite Orgueil yield mean zirconium and hafnium abundances of 5.2 and 0.10 ppm, respectively. These abundances are lower than we reported earlier for two C1 chondrite samples which we now suspect may have suffered contamination. The new C1 zirconium and hafnium abundances are in closer agreement with predictions based on theories of nucleosynthesis than the earlier data.  相似文献   

4.
Hydrothermal experiments in the temperature range 750–1020°C have defined the saturation behavior of zircon in crustal anatectic melts as a function of both temperature and composition. The results provide a model of zircon solubility given by: In DZrzircon/melt= ?3.80?[0.85(M?1)]+12900/T where DZrzircon/melt is the concentration ratio of Zr in the stoichiometric zircon to that in the melt, T is the absolute temperature, and M is the cation ratio (Na + K + 2Ca)/(Al · Si). This solubility model is based principally upon experiments at 860°, 930°, and 1020°C, but has also been confirmed at temperatures up to 1500°C for M = 1.3. The lowest temperature experiments (750° and 800°C) yielded relatively imprecise, low solubilities, but the measured values (with assigned errors) are nevertheless in agreement with the predictions of the model.For M = 1.3 (a normal peraluminous granite), these results predict zircon solubilities ranging from ~ 100 ppm dissolved Zr at 750°C to 1330 ppm at 1020°C. Thus, in view of the substantial range of bulk Zr concentrations observed in crustal granitoids (~ 50–350 ppm), it is clear that anatectic magmas can show contrasting behavior toward zircon in the source rock. Those melts containing insufficient Zr for saturation in zircon during melting can have achieved that condition only by consuming all zircon in the source. On the other hand, melts with higher Zr contents (appropriate to saturation in zircon) must be regarded as incapable of dissolving additional zircon, whether it be located in the residual rocks or as crystals entrained in the departing melt fraction. This latter possibility is particularly interesting, inasmuch as the inability of a melt to consume zircon means that critical geochemical “indicators” contained in the undissolved zircon (e.g. heavy rare earths, Hf, U, Th, and radiogenic Pb) can equilibrate with the contacting melt only by solid-state diffusion, which may be slow relative to the time scale of the melting event.  相似文献   

5.
Fifteen carbonaceous chondrites were analysed for Mo and Ir by neutron activation analysis combined with a metal extraction method. The results of two Orgueil analyses gave a mean concentration of 915 ppb Mo. This corresponds to 2.51 atoms Mo/106 atoms Si, which is 50% lower than data reported by Case et al. [3]. The lower Mo concentration for Orgueil was predicted by Suess and Zeh [4] from semi-empirical abundance rules. A constant Mo/Ir ratio is found for C1, C2, and C3V chondrites; C3Os have variable Mo/Ir ratios. These variations are due to variable Ir concentrations. Micron-sized grains enriched in Ir but not in Mo are presumably responsible for these variations. The Mo content of Karoonda is nearly a factor of four lower than that of C3V chondrites.  相似文献   

6.
The abundance of tin in 21 stony meteorites and 12 standard rocks has been determined by the stable isotope dilution technique. The measurements of the C1 chondrite Orgueil gives a cosmic abundance for tin of 3.7 (with respect to Si= 106 atoms) and thus substantiates the peak in the cosmic abundance curve due to the closed proton shell forZ = 50. The low abundance of tin in ordinary chondrites allows tin to be reassigned to the strongly depleted group of elements in the context of the Larimer-Anders model. Our values for the standard rocks are in reasonable agreement with the presently accepted abundances of tin, except for the diabase W-1 and tonalite T-1 for which significantly lower values were obtained.  相似文献   

7.
The wide variety of basalt types, tholeiitic to basanite, dredged from Loihi Seamount have minor and trace element abundances that are characteristic of subaerial Hawaiian basalts, thereby confirming that Loihi Seamount is a manifestation of the Hawaiian “hot spot”. Within the Loihi sample suite there are well-defined positive correlations among abundances of highly incompatible elements (P, K, Rb, Ba, Nb, light REE and Ta) and moderately incompatible elements (Sr, Ti, Zr and Hf) and between MgO, Ni and Cr. However, within the Loihi suite abundance ratios of geochemically similar elements (Zr/Hf, Nb/Ta and La/Ce) vary by factors of 1.2–1.5 and abundance ratios of highly incompatible elements such as P/Ce, P/Th, K/Rb, Ba/Th and La/Nb vary by factors of 1.2–2.5. These abundance ratios are not readily changed by different degrees of fractionation and melting. Therefore, we conclude that these samples are not genetically related by different degrees of melting of a compositionally homogeneous source.On the basis of K/P, K/Ti, P/Ce, Zr/Nb, Th/P and La/Sm abundance ratios, the twelve samples studied in detail can be divided into six geochemical groups. Samples within each group are similar in 87Sr/86Sr [1], and intra-group compositional variations may reflect low-pressure fractionation and different degrees of melting. In addition, crossing chondrite-normalized REE patterns within the alkalic basalt groups reflect equilibration of the magmas with garnet. In ratio-ratio plots involving abundance ratios of highly incompatible elements, e.g., La/P, Nb/P, K/P, Rb/P, Ba/P and Th/P, the geochemical groups define linear arrays suggestive of mixing. However, these data combined with the isotopic data are not consistent with two-component mixing.  相似文献   

8.
The Hf isotope composition of original igneous or detrital zircons in high-grade metamorphic rocks can be used to trace protolith origin, but metamorphic effect on the Hf isotope composition of newly grown domains remains to evaluate. We report a detailed in situ combined study of intragrain U-Pb and Lu-Hf isotopes in zircons from granitic gneiss and eclogite in the Dabie orogen of China that experienced ultrahigh-pressure eclogite-facies metamorphism. The results show correlations in 206Pb / 238U age, initial Hf isotope composition, and Th / U and Lu / Hf ratios between the domains of different origins. The metamorphic domains are characterized by low Th / U and Lu / Hf ratios but high ?Hf(t) values relative to the igneous core and mantle of pre-metamorphic ages. Positive correlations are observed between Th / U and Lu / Hf ratios, pointing to the similar effect of metamorphism on both U-Th-Pb and Lu-Hf isotope systems. Thus the metamorphic domains are distinguished from the igneous core and mantle by their low Lu / Hf ratios that are less than 0.001 for the granitic gneiss and less than 0.0001 for the eclogite. Despite differences in both protolith age and geochemical source between granitic gneiss and eclogite, rim ?Hf(t) values are variably 3.1 to 13.5 greater than core ?Hf(t) values when calculated at timing of protolith formation. This indicates that the zircon overgrowth was associated with a metamorphic medium that has high 176Hf / 177Hf but low 176Lu / 177Hf ratios. While the metamorphic domains contain more radiogenic Hf isotopes than the original igneous core and mantle, their Lu / Hf ratios are significantly lower than those of core and mantle. Therefore, the metamorphic zircons acquired their initial Hf isotope ratios from metamorphic fluids that have high 176Hf / 177Hf ratios but low Lu / Hf ratios with sound variability depending on the Lu-Hf isotope compositions of pre-existing and co-precipitating phases.  相似文献   

9.
The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are sub-chondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), −4.70<?Hf<+16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, ?Hf=0.78?Nd+5.66 (n=22, R2=0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in ?Hf of Asian dust exceeds that predicted on the basis of corresponding ?Nd values (−4.7<?Hf<+2.5; −10.9<?Nd<−10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (?Hf=+8.6 and +10.3, ?Nd=−9.5 and −9.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.  相似文献   

10.
Eight silicate samples from the Orgueil carbonaceous chrondrite were analyzed for He, Ne, Ar, and Xe by a stepwise heating technique. Six of the samples, including two etched with NaOH, were density fractions covering the following ranges: < 2.35, 2.35–2.45, 2.45–2.48, and > 2.48 g/cm3. Two others were grain-size fractions, separated according to their ability to form a colloid at pH 11.5.All fractions are grossly deficient in cosmogenic neon, having retained only 8–33% of their normal complement. Retentivity increases with density.All fractions give low20Ne/22Ne ratios above 950°C, suggestive of D.C. Black's exotic “Neon-E” component of20Ne/22Ne ≤ 3.4. The lowest ratios were found in the low-density and especially the non-colloidal fractions. This suggests that the host phase of Ne-E is a clay mineral of lower iron content and coarser grain size than the main silicates of Orgueil.The main fraction,ρ = 2.35–2.45g/cm3, is inhospitable to Xe; it contains less Xe and releases it more readily at low temperatures (30–35% in 1 hour at 550°C) than do any of the other fractions.  相似文献   

11.
Intrusive and extrusive basaltic rocks have been dredged from the Conrad fracture zone (transecting the slow-spreading America-Antarctica Ridge). The majority of rocks recovered are holocrystalline with the dominant mineral assemblage being plagioclase plus clinopyroxene with or without minor Fe-Ti oxides (olivine occurs in only three samples) and many of the samples show evidence of extensive alteration. Secondary minerals include chlorite, actinolite, K- and Na-feldspar, analcite and epidote. In terms of bulk chemistry the rocks are characterized by their generally evolved and highly variable compositions (e.g.Mg*=0.65?0.35;TiO2=0.7?3.6%;Zr=31?374ppm;Nb=<3?21ppm;Y=17?96ppm;Ni=100?9ppm), but with respect to the immobile incompatible element ratios (e.g. Zr/Nb, Y/Nb, La/Sm) are similar to “normal” or depleted mid-oceanic ridge basalts.Quantitative major and trace element modelling indicate that most of the variation observed can be attributed to low-pressure fractional crystallization of plagioclase plus clinopyroxene in approximately equal proportions with or without minor Fe-Ti oxides. The range in composition can be accounted for by up to 76% fractional crystallization. Although ferrobasalts have not frequently been associated with slow spreading ridges, the extreme differentiation observed in the Conrad fracture zone basalts implies some additional constraint other than spreading rate on the formation of ferrobasalt and reaffirms the importance of extensive crustal differentiation during the production of this basalt type.  相似文献   

12.
Isotopic anomalies in Mo and Zr have recently been reported for bulk chondrites and iron meteorites and have been interpreted in terms of a primordial nucleosynthetic heterogeneity in the solar nebula. We report precise Zr isotopic measurements of carbonaceous, ordinary and enstatite chondrites, eucrites, mesosiderites and lunar rocks. All bulk rock samples yield isotopic compositions that are identical to the terrestrial standard within the analytical uncertainty. No anomalies in 92Zr are found in any samples including high Nb/Zr eucrites and high and low Nb/Zr calcium-aluminum-rich inclusions (CAIs). These data are consistent with the most recent estimates of <10−4 for the initial 92Nb/93Nb of the solar system. There exists a trace of isotopic heterogeneity in the form of a small excess of r-process 96Zr in some refractory CAIs and some metal-rich phases of Renazzo. A more striking enrichment in 96Zr is found in acetic acid leachates of the Allende CV carbonaceous chondrite. These data indicate that the r- and s-process Zr components found in presolar grains were well mixed on a large scale prior to planetary accretion. However, some CAIs formed before mixing was complete, such that they were able to sample a population of r-process-enriched material. The maximum amount of additional r-process component that was added to the otherwise well-mixed Zr in the molecular cloud or disk corresponds to ∼0.01%.  相似文献   

13.
Five nodules of eclogite, one nodule of garnet peridotite and one sample of kimberlite from the Roberts Victor mine were analyzed for concentrations of U, Th, Pb, Rb and Sr and isotopic compositions of Pb and Sr. In the eclogites, U content ranges from 0.09 to 0.26 ppm, Th from 0.35 to 1.1 ppm, Pb from 0.79 to 5.5 ppm, Rb from 2.1 to 28 ppm and Sr from 133 to 346 ppm;206Pb/204Pb ratios range from 14.8 to 18.5,207Pb/204Pb from 14.9 to 15.7,208Pb/204Pb from 35.2 to 38.5. The garnet peridotite contains 0.22 ppm U, 0.97 ppm Th, 1.05 ppm Pb, 6.9 ppm Rb and 108 ppm Sr and the kimberlite contains 2.5 ppm U, 30 ppm Th, 37 ppm Pb, 113 ppm Rb and 2040 ppm Sr. The lead in the eclogites has two components, a lead pyroextractable at 1100–1200° and a non-pyroextractable residual lead. In three of the eclogites, which are to some extent altered, a proportion of the pyroextractable lead may be contaminating lead from the kimberlite, but an altered kyanite eclogite does not appear to be contaminated by this same kimberlite. The pyroextractable lead from a less altered eclogite contains a much larger proportion of206Pb. Compositions calculated for the residual leads vary greatly. In many of the pyroextraction runs the primary eclogitic phases disappeared and the new phases plagioclase, clinopyroxene and a magnetic iron compound were formed. Why part of the lead should have been retained by these new phases is not understood.  相似文献   

14.
Hf isotope measurement has been carried out for UHP metamorphic eclogite from Xindian by using LA-MC-ICP-MS technique. The result indicates that metamorphic growth zircon has high 176Hf/177Hf (0.282544―0.282612) and low 176Lu/177Hf (0.000004―0.000211) ratio,inherited and recrystallized proto-lith zircon has low 176Hf/177Hf (0.282266―0.282466) and high 176Lu/177Hf (0.000090―0.002144) composi-tions. The low 176Lu/177Hf of growth zircon comes from its decreasing of Lu and increasing of Hf during UHP process. The high 176Hf/177Hf deduced from high radiogenic 176Hf,which was produced from long-term evolution of high Lu/Hf ratio minerals. Partial recrystallization of protolith zircon would not cause reworking of Lu/Hf isotope in zircon. Compared to U-Pb,zircon Lu-Hf system has better stability. The initial Hf isotope composition of metamorphic growth zircon may represent the Hf isotope compo-sition of whole rock system at the same time. The initial εHf of 3.0 for metamorphic precursor formation of Xindian eclogite indicates that the source material mainly derived from weak depleted mantle or mixing of depleted mantle with old crust.  相似文献   

15.
The concentration of Ba in 7 carbonaceous chondrites, 18 ordinary chondrites, 3 achondrites and 1 stony-iron meteorite has been determined by the stable isotope dilution technique using solid source mass spectrometry. Analysis of the C1 chondrite Orgueil indicates a small adjustment of the “cosmic” abundance of Ba to 4.2 on the Si=106 abundance scale. The present work provides a more complete coverage of a number of meteorite classes than has so far been available for the abundance of Ba in stony meteorites.  相似文献   

16.
Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10?11y?1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.  相似文献   

17.
Sm-Nd and Lu-Hf isotopic data are presented for 19 chondritic meteorites: six carbonaceous chondrites, five L-chondrites, seven H-chondrites, and a single enstatite chondrite. The primary goal of the study is to better define the Bulk Silicate Earth (BSE) reference values for Hf isotopes. Except for one sample with lower Sm/Nd, the Sm-Nd data define a cluster around the accepted reference values for chondrites and terrestrial planets, giving a mean 147Sm/144Nd of 0.1960±0.0005, and a mean 143Nd/144Nd of 0.512631±0.000010 (uncertainties are two standard errors). It seems appropriate to retain the presently accepted Sm-Nd reference parameters, 147Sm/144Nd=0.1966 and 143Nd/144Nd=0.512638 (when fractionation-corrected to 146Nd/144Nd=0.7219).Lu-Hf isotopic data are not clustered, but spread along an approximate 4.5-Ga isochron trend, with a range of 176Lu/177Hf from 0.0301 to 0.0354. The data are similar to many of the samples of chondrites presented by Bizzarro et al. [Nature 421 (2003) 931], but lack the range to lower Lu/Hf shown by those authors. Our chondrite data define a regression line of 4.44±0.34 Ga when 1.867×10−11 year−1 is used for the decay constant of 176Lu [Science 293 (2001) 683; Earth Planet. Sci. Lett. 219 (2004) 311-324]. Combining our data with the main population of analyses from Bizzarro et al. [Nature 421 (2003) 931] yields 4.51±0.24 Ga. Unless samples of eucrite meteorites and deviating replicates of chondrites with 176Lu/177Hf less than 0.030 are employed, no combination of the main population of chondrite Lu-Hf data yields a regression with sufficiently low error to constrain the decay constant of 176Lu. Sample heterogeneity seems to hinder the acquisition of reproducible Lu-Hf analyses from small, manually ground pieces of chondrites, and we suggest that analysis of powders prepared from large volumes of meteorite will be needed to adequately characterize the Lu-Hf isotope systematics of chondritic reservoirs and of BSE. Our results for carbonaceous chondrites show higher average 176Lu/177Hf and 176Hf/177Hf than ordinary chondrites, and the mean of carbonaceous chondrites also coincides with replicate analyses of a powder representing a large volume of meteorite, the Allende powder from the Smithsonian Institution. Use of the carbonaceous chondrite mean for BSE Lu-Hf characteristics results in a BSE Hf-Nd point that lies well within the array of terrestrial compositions, and leads to plausible initial εHf values for Precambrian rocks. An improved objective resolution of meteorite data and of meteoritic models for the Earth needs to occur before BSE can be established for Lu-Hf.  相似文献   

18.
Hydrogen isotopic compositions in seven carbonaceous chondrites lie in the range ?70 to +771‰ relative to SMOW. These values decrease, to a range from ?145 to +219‰, after low-temperature oxidation in an oxygen plasma. Deuterium enrichment is therefore concentrated in the organic matter, the hydrous silicates probably lying close to the terrestrial range for such material. Calculated values for δD of the organic fraction are +450 ‰ for Orgueil and Ivuna and up to +1600‰ for Renazzo. These enrichments, at least for Orgueil and Ivuna, suggest equilibration with protosolar hydrogen at very low temperatures. Assuming a value of 2.5 × 10?5 for the protosolar D/H ratio, nominal equilibration temperatures of 230°K for silicates and 180°K for organic matter may be derived.  相似文献   

19.
Among long-lived radioactive parent-daughter element pairs, the ratio Lu/Hf is strongly fractionated relative to constant Sm/Nd in the Earth's sedimentary system. This is caused by high resistance to chemical weathering of the mineral zircon (Zr,Hf)SiO4. Zircon-bearing sandy sediments on and near continents have very low Lu/Hf, while deep-sea clays have up to three times the chondritic Lu/Hf ratio. Turbidity currents mechanically carry the low-Lu/Hf sandy material onto the ocean floor. The results are important for the crust-to-mantle recycling discussion, where most recycled materials would be subducted oceanic sediments. Such sediment should be capable of explaining the HfNd mantle isotopic variation by mixing with peridotite, but in fact any average pelagic sediment has Nd/Hf and Lu/Hf too high to allow mixing curves to pass through the Hf/Nd isotopic array. The array could only be reproduced by subduction of turbidite sandstone with pelagic sediment in the approximate ratio 1.2 to 1, and by maintaining a good mixture between the two components. At least today, turbidites are available for subduction only at locations quite different and distant from those where pelagic sediments may be recycled; furthermore, mantle isotopic variation shows that the mantle often cannot mix itself well enough to homogenize these widely-separated sedimentary components to the degree required. The Lu/Hf fractionations place a severe restriction on the ability of recycled sediments to explain mantle isotopic patterns.  相似文献   

20.
The Hejiazhuang pluton is located in the South Qinling Tectonic Belt(SQTB)in the north side of the Mianxian-Lueyang Suture Zone,and consists dominantly of granodiorites.LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic analyses reveal that these granodiorites of the Hejiazhaung pluton emplaced at~248 Ma,and show a large variation in zirconεHf(t)values from4.8 to 8.8.These granodiorite samples are attributed to high-K to mid-K calc-alkaline series,and characterized by high SiO2(66.6%–70.0%),Al2O3(15.04%–16.10%)and Na2O(3.74%–4.33%)concentrations,with high Mg#(54.2–61.7).All samples have high Sr(627–751 ppm),Cr(55–373 ppm)and Ni(17.2–182 ppm),but low Y(5.42–8.41 ppm)and Yb(0.59–0.74 ppm)concentrations with high Sr/Y ratios(84.90–120.66).They also display highly fractionated REE patterns with(La/Yb)N ratios of 18.9–34.0 and positive Eu anomalies(δEu=1.10–2.22)in the chondrite-normalized REE patterns.In the primitive mantle normalized spidergrams,these samples exhibit enrichment in LILEs but depletion in Nb,Ta,P and Ti.These geochemical features indicate that the granodioritic magma of the Hejiazhuang pluton was derived from the partial melting of hybrid sources comprising the subducted oceanic slab and sediments,and the melts were polluted by the mantle wedge materials during their ascent.The emplacement ages and petrogenesis of the Hejiazhuang pluton prove that the initial subduction of the Mianlue oceanic crust occurred at~248 Ma ago,and the SQTB was still under subduction tectonic setting in the Early Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号