首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From Upper Cretaceous volcanic rocks of Southeast Sicily 107 cores from 19 sites were collected giving a mean palaeomagnetic pole position at 62°N, 223°E, A95 = 5.4° after AF-cleaning. This pole agrees with the Upper Cretaceous pole of Northern Africa indicating that no large post-Cretaceous relative motion has occurred between Africa and Sicily.  相似文献   

2.
One hundred samples from nine sites in Upper Cretaceous volcanics (K/Ar age 85–99 m.y.) of the magmatic province of Cabo de Santo Agostinho, Pernambuco (8.4°S, 35.0°W) yield a mean direction of magnetizationD = 0.4°, I = ?20.6°withα95 = 4.8°, k = 114 after AF cleaning. All sites have normal polarity with a mean pole, named SAK10, at 87.6°N, 135°E withA95 = 4.5° which is close to other Upper Cretaceous poles for South America. These poles are compared with Upper Cretaceous poles of Africa for various reconstructions of the two continents.  相似文献   

3.
From Middle-Upper Jurassic volcanics at the western margin of the Maranha?o Basin (6.4°S, 47.4°W) 15 sites (121 samples) have a mean magnetization directionD = 3.9°,I = ?17.9° withα95 = 9.3°,k = 17.9 after AF cleaning (all sites have normal polarity). This yields a pole (named SAJ2) at 85.3°N, 82.5°E (A95 = 6.9°) which is near to the other known Middle Jurassic South American pole. For 21 sites (190 samples) from Lower Cretaceous basalt intrusions from the eastern part of the Maranha?o Basin (6.5°S, 42°W) the mean direction isD = 174.7°,I = +6.0° withα95 = 2.8°,k = 122 (all sites have reversed polarity) yielding a pole (SAK9) at 83.6°N, 261°E (A95 = 1.9°) in agreement with other Lower Cretaceous pole positions for South America. Comparing Mesozoic pole positions for South America and Africa in the pre-drift configuration after Bullard et al. [13] one finds a significant difference (with more than 95% probability) for the Lower Cretaceous and Middle Jurassic poles and also a probable difference for the mean Triassic poles indicating a small but probably stationary separation of the two continents from the predrift position in the Mesozoic until Lower Cretaceous time which may be due to an early rifting event.  相似文献   

4.
Lower Cretaceous red sedimentary rocks from the depositional basin of East Qilian fold belt have been collected for a paleomagnetic study. Stepwise thermal demagnetization reveals two or three components of magnetization from dark red sandstones. Low-temperature magnetic component is consistent with the present Earth Field direction in geographic coordinates. High-temperature magnetic components are mainly carried by hematite. The mean pole of 19 sites for high-temperature magnetic components after tilt-correction is λ=62.2°N, φ=193.4°E, A95=3.2°, and it passes fold tests at 99% confidence level and reversal tests at 95% confidence level. The paleopole is insignificantly different from that of Halim et al. (1998) from the same sampling area at the 95% confidence level. Compared with paleomagnetic results for North China, South China, and Eurasia, our results suggest that no significant relative latitudinal displacement has taken place between Lanzhou region and these blocks since Cretaceous time. Remarkably, the pole of Lanzhou shows a 20° clockwise rotation with respect to those of North China, South China, and Eurasia. Geological information indicates that the crustal shortening in the western part of Qilian is greater than that in eastern part. In this case, the clockwise rotation of sampling area was related to India/Eurasia collision, and this collision resulted in a left-lateral strike-slip motion of the Altun fault in north Tibetan Plateau after the Cretaceous.  相似文献   

5.
Palaeomagnetic measurements on the pre-Miocene carbonatite volcanics of Tororo, S.E. Uganda, have yielded a pole at 75.8°N, 195.5°E with A95 = 9.4°. Along with the Tertiary poles from East African rift systems, the Eocene-Oligocene pole from Ethiopia and the mean Mesozoic pole from the rest of Africa, a polar wander path for Africa fromMesozoic to present is suggested.  相似文献   

6.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

7.
Of 16 sites collected in the Taru grits (Permian) and Maji ya Chumvi beds (Permo-Triassic) of East Africa only 6 sites from the Maji ya Chumvi sediments gave meaningful palaeomagnetic results. After thermal cleaning the 6 sites (32 samples) give an Early Triassic pole at 67°N, 269°E with A95 = 17° in excellent agreement with other African Mesozoic poles. There are now 26 Mesozoic palaeomagnetic poles for Africa from widely diverse localities ranging in present latitude from 35°N to 30°S. The poles subdivide into Triassic (17 poles) and Cretaceous (9 poles) groups whose means are not significantly different. The palaeomagnetic pole for Africa thus remained in much the same position for 170 m.y. from Early Triassic to Late Cretaceous. The data form an especially good set for estimating the palaeoradius using Ward's method. Values of 1.08 ± 0.15 and 1.03 ± 0.19 times the present radius are deduced for the Triassic and Cretaceous respectively with a mean value of 1.08 ± 0.13 for all the Mesozoic data combined. The analysis demonstrates that hypotheses of earth expansion are very unattractive.  相似文献   

8.
A paleomagnetic study of about 95 samples from 16 sites sampled in the Early Cretaceous in Luanping basin in Hebei Province was reported. Stepwise thermal demagnetization was used to isolate magnetic components. Most samples have a characteristic direction with a high temperature component above 500°C. The tectonic-corrected data areD = 347.8°,I = 50.4°, α95 = 7.l°, and the corresponding pole position is at 76.1°N, 346.3°E,with dp =6.4°,dm = 3.8°, paleolatitude λ = 31.1°N. This result indicates a counterclockwise post-Cretaceous rotation of 30.7° ±9.8° with respect to the stable Ordos basin in the west of North China Block, and a non-significant northward motion. This rotation could be related to local fault action or structural detachment, or regional NNW-NWWward motion and collision of Kula-Pacific plate with eastern China since the Early Cretaceous.  相似文献   

9.
Paleomagnetic analyses of samples collected from a 500 m thick Jurassic section in the Pontides reveal the presence of two components of remanent magnetization: an unstable, low-temperature component which is removed during thermal demagnetization through 220°C and a dominant component which displays consistent directions through 650°. Curie point and IRM studies indicate that goethite is responsible for the low-temperature component whereas both magnetite and hematite contribute to the more stable component. The pole position determined from the stable magnetization is located at 18.8°N, 91.8°E (α95=7.7°, N=134) indicating that the section has undergone more than 90° clockwise rotation since the Late Jurassic. Ancillary geologic evidence, particularly the orientation of Jurassic facies belts is also consistent with a 90° clockwise rotation in this region of northwest Anatolia. The pole suggests that the section may also have migrated slightly northward. Although the age of these movements is currently unknow, it is proposed that they are principally related to the closure of the Neo-Tethys during the Late Cretaceous/Early Tertiary. Some of the rotation may be related to the right lateral movement along the North Anatolian Transform Fault which was initiated in the Miocene.  相似文献   

10.
Palaeomagnetic results are reported from the predominantly green sediments of the Upper Permian to Lower Triassic Sakamena Group and the Upper Carboniferous to Lower Permian Sakoa Group of Madagascar. Secondary magnetizations could only be removed successfully through thermal demagnetization procedures and then only if the cleaning process was completed by 450°C. Heating in air caused extensive magnetochemical changes to occur above this temperature. Coercivity spectrum analysis and low-temperature characteristics of the heated and unheated green sediments indicate that considerable amounts of fine-grained single-domain magnetite are formed at 500°C or more from some non-magnetic mineral, probably the iron silicates. For this reason consistent palaeomagnetic data could only be obtained from about half the samples collected. Results from 4 sites (19 samples) of the Lower Sakamena Group give a palaeomagnetic pole at 64.9S, 113.9E (A95 = 5.6°) and 3 sites (16 samples) from the Glacial Series of the Sakoa Group give a pole at 47.9S, 84.1E (A95 = 8.1°). When compared with corresponding data from Africa these results confirm and strengthen our previous conclusions from the Triassic-Jurassic Isalo Group regarding the palaeoposition of Madagascar. All three poles are only consistent with the Smith and Hallam reconstruction which places Madagascar off the eastern coast of Africa adjacent to Kenya and Tanzania.  相似文献   

11.

A paleomagnetic study of about 95 samples from 16 sites sampled in the Early Cretaceous in Luanping basin in Hebei Province was reported. Stepwise thermal demagnetization was used to isolate magnetic components. Most samples have a characteristic direction with a high temperature component above 500°C. The tectonic-corrected data areD = 347.8°,I = 50.4°, α95 = 7.l°, and the corresponding pole position is at 76.1°N, 346.3°E,with dp =6.4°,dm = 3.8°, paleolatitude λ = 31.1°N. This result indicates a counterclockwise post-Cretaceous rotation of 30.7° ±9.8° with respect to the stable Ordos basin in the west of North China Block, and a non-significant northward motion. This rotation could be related to local fault action or structural detachment, or regional NNW-NWWward motion and collision of Kula-Pacific plate with eastern China since the Early Cretaceous.

  相似文献   

12.
The characteristic magnetization of redbed samples from the upper part of the Série d'Abadla (probably Early Permian 31°N, 2.7°W) has a mean direction derived from 13 sites of D=129°, I=11°, k=59, α95=6° and a corresponding south paleopole at 29°S, 60°E, A95=5°. All directions have reversed polarity. The paleolatitude of the northern fringe of the Saharan craton was 6°±3°S, which is in excellent agreement with that for the Moroccan Meseta. Therefore, in all probability, there has been no paleolatitudinal displacement greater than about 500 km of the Moroccan Meseta relative to Africa since Permian time. Comparison of results from sedimentary rocks shows no evidence for relative rotation of the Moroccan Meseta since Permian time. Small apparent rotations are indicated by evidence from massive trachyandesite lavas from Morocco, but we argue that these could have arisen from the incomplete averaging of secular variation and uncertainties in estimates of paleohorizontal, rather than from true tectonic rotations. The combined latest Carboniferous/Early Permian paleopole for the Saharan craton and the Meseta differs form the path of apparent polar wandering for North America when the continents are assembled in Wegener's Pangea (Pangea A, in which northwest Africa is opposite North America). It is in reasonable agreement when the continents are assembled in the Pangea B configuration (northwest Africa opposite Europe).  相似文献   

13.
Results of a paleomagnetic study carried out on the exposed volcanic rocks on the western side of the South Kenya Rift Valley are presented. Nine stratigraphic groups ranging in age from Miocene to Pleistocene were sampled. The rocks consist of basalts, trachytes, nephelinites, melanephelinites, olivine melanephelinites and ignimbrites. Paleomagnetic poles obtained for different age ranges are as follows: Period I (0.64–0.72 Ma), 116°E, 85°N (A95 = 6°); Period II (1.6–6.9 Ma), 297°E, 84°N (A95 = 4°); Period III (12.0–15.0 Ma), 34°E, 80°N (A95 = 9°). The results for Period II show large secular variations which are in disagreement with the model predictions for near-equatorial sites.  相似文献   

14.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

15.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

16.
Palaeomagnetic investigation of basic intrusives in the Proterozoic Mount Isa Province yields three groups of directions of stable components of NRM after magnetic cleaning in fields up to 50 mT (1 mT= 10 Oe). The youngest group (IA) includes results from the Lakeview Dolerite, and yields a palaeomagnetic pole at 12°S, 124°E (A95 = 11°). The second group (IB) has a palaeomagnetic pole 53°S, 102°E (A95 = 11°). The third group (IC) is derived from the Lunch Creek Gabbro and contains normal and reversed polarities of magnetization with a palaeomagnetic pole at 63°S, 201°E (A95 = 9°). Some samples from the gabbro have anomalously low intensities of remanent magnetization in obscure directions attributed to the relative enhancement of the non-dipole component of the palaeomagnetic field during polarity reversal. The present attitude of the igneous lamination is probably of primary, not tectonic origin.  相似文献   

17.
We report detailed rock-magnetic and paleomagnetic directional data from 35 lava flows (302 standard paleomagnetic cores) sampled in the Central-Northern region of Uruguay in order to contribute to the study of the paleosecular variation of the Earth’s magnetic field during early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average unit direction is rather precisely determined from 29 out of 35 sites. All A95 confidence angles are less than 8°, which points to small within-site dispersion and high directional stability. Normal polarity magnetizations are revealed for 19 sites and 10 are reversely magnetized. Two other sites yield well defined intermediate polarities. The mean direction, supported by a positive reversal test is in reasonably good agreement with the expected paleodirection for Early Cretaceous stable South America and in disagreement with a 10° clockwise rotation found in the previous studies. On the other hand, paleomagnetic poles are significantly different from the pole position suggested by hotspot reconstructions, which may be due to true polar wander or the hotspot motion. Our data suggest a different style of secular variation during (and just before) the Cretaceous Normal Superchron and the last 5 Ma, supporting a link between paleosecular variation and reversal frequency.  相似文献   

18.
Palaeomagnetic results are reported from the continental facies of the Triassic-Jurassic Isalo Group of Madagascar. Stability of the magnetic remanence was tested using the alternating field and progressive thermal demagnetization techniques. Results from 8 sites, 6 located in northwestern Madagascar and 2 from the southwestern region, yield a palaeomagnetic pole at 74.2°S, 97.1°E (N = 8, A95 = 6.3°). Three models previously proposed to describe the drift history of Madagascar relative to Africa are considered and the relevant geological and geophysical information is reviewed. The palaeomagnetic data are only consistent with the pre-drift model which places Madagascar off the east coast of Africa adjacent to Kenya and Tanzania. This is also the continental drift fit favoured on geological grounds.  相似文献   

19.
Palaeomagnetic results from the Lower Palaeozoic inliers of northern England cover the upper part of the (Middle Ordovician) Borrowdale Volcanic Series (palaeomagnetic pole 208°E, 18°S, A95 = 9.4°), minor extrusive units relating to the Caradoc and Ashgill stages of Ordovician times, intrusive episodes of Middle Ordovician and Middle Silurian to Late Devonian age, and the Shap Granite of Devonian (393 m.y.) age (palaeomagnetic pole 313°E, 33°S, A95 = 5.6°).A complete assessment of Ordovician to Devonian palaeomagnetic data for the British region shows that the pole was nearly static relative to this region for long intervals which were separated by shifts occupying no more than a few millions of years. The mean palaeomagnetic poles are: Ordovician (6°E, 16°S), Lower Silurian (58°E, 16°N), Middle Silurian/Lower Devonian (318°E, 6°N) and Middle/Upper Devonian (338°E, 26°S); the first two shifts separating these mean poles can be explained predominantly in terms of rotational movements of the crustal plate but the last involved appreciable movement in palaeolatitude.Comparison of Lower Palaeozoic palaeomagnetic data from the British region with contemporaneous data from continental Europe/North America on the Pangaean reconstruction reveals a systematic discrepancy in palaeolatitude between the two regions prior to Middle Devonian times. This discrepancy was eliminated during a few millions of years of Lower/Middle Devonian times (ca. 395 m.y.) and can be explained in terms of ca. 3500 km of sinistral strike-slip movement close to the line of the orthotectonic Caledonides. This motion is linked both in time and place to the impingement of the Gondwanaland and Laurentian supercontinents during the Acadian orogeny; this appears to have displaced the British sub-plate until it became effectively locked between the Baltic and Laurentian regions. Although movement of the dipole field relative to the British region in Lower Palaeozoic times is now well defined, nearly one fifth of the total data show that the geomagnetic field was more complex than dipolar during this interval. Until the significance of these anomalies is fully resolved, the tectonic model derived from the palaeomagnetic data cannot be regarded as unambiguous.  相似文献   

20.
A preliminary collection of 43 palaeomagnetic samples (10 sites) from the miogeosynclinal and supposedly autochthonous Umbrian sequence in the Northern Apennines, Italy, was analysed by means of alternating magnetic fields and thermal demagnetization studies. The older group of samples, taken from the upper part of the Calcari Diasprini (Malm), the Fucoid Marls (Albian/Cenomanian) and from the basal part of the Scaglia Bianca (Early Late Cretaceous), all showed normal polarity directions and resulted in a mean site direction:D = 290.5°,I = +51.5°,α95 = 11°,k = 74,N = 4.The younger group of samples, taken throughout the Scaglia Rossa sequence (Latest Cretaceous/Middle Eocene) showed normal and reversed polarity directions. In contrast to the older group, the magnetic analysis of these samples resulted in a considerably less dense grouping of site mean directions. This presumably is due to inaccuracies introduced with the very large bedding tilt corrections that had to be applied to the samples of some sites. A tentative mean site direction for these Scaglia Rossa samples was computed as:D = 351°,I = +52.5°,α95 = 23.5°,k = 11.5,N = 5.Despite the low precision of the Scaglia Rossa result, the significant deviation between this Latest Cretaceous/Early Tertiary direction and the Late Jurassic/Early Late Cretaceous direction indicates a counterclockwise rotation of more than forty degrees. This rotation can be dated as Late Cretaceous.How far these data from the Northern Apennines apply to other parts of the Italian Peninsula has yet to be established. The timing of this rotation is not at variance with the data from other parts of Mediterranean Europe (Southern Alps, Iberian Peninsula) and from Africa. However, taking into account the preliminary nature of the results, the amount of rotation of the Northern Apennines seems to surpass the rotation angle which is deduced from the palaeomagnetic data for Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号