首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of the equatorward shift of the eastward and westward electrojets during magnetic storms main phase is analyzed based on the meridional chains of magnetic observatories EISCAT and IMAGE and several Russian observatories (geomagnetic longitude ≈110°, corrected geomagnetic latitudes 74°>φ>51°.) Magnetic storms of various Dst index intensity where the main phase falls on 1000 UT - 2400 UT interval were selected so that one of the observatory chains was located in the afternoon - near midnight sector of MLT. The eastward electrojet center shifts equatorward with Dst intensity increase: when Dst ≈ −50 nT the electrojet center is located at φ ≈ 62°, when Dst ≈ −300 nT it is placed at φ ≈ 54°. The westward electrojet center during magnetic storms main phase for intervals between substorms shifts equatorward with Dst increase: at φ ≈ 62° when Dst ≈ −100 nT and at φ ≈ 55° when Dst ≈ −300 nT. During substorms within the magnetic storms intervals the westward electrojet widens poleward covering latitudes φ ≈ 64°–65°. DMSP (F08, F10 and F11) satellite observations of auroral energy plasma precipitations at upper atmosphere altitudes were used to determine precipitation region structure and location of boundaries of various plasma domains during magnetic storms on May 10–11, 1992, February 5–7 and February 21–22, 1994. Interrelationships between center location, poleward and equatorward boundaries of electrojets and characteristic plasma regions are discussed. The electrojet center, poleward and equatorward boundaries along the magnetic observatories meridional chain were mapped to the magnetosphere using the geomagnetic field paraboloid model. The location of auroral energy oxygen ion regions in the night and evening magnetosphere is determined. Considerations are presented on the mechanism causing the appearance in the inner magnetosphere during active intervals of magnetic storms of ions with energy of tens KeV. In the framework of the magnetospheric magnetic field paraboloid model the influence of the ring current and magnetospheric tail plasma sheet currents on large-scale magnetosphere structure is considered.  相似文献   

2.
We have combined ∼300 h of tristatic measurements of the field-perpendicular F region ionospheric flow measured overhead at Tromsø by the EISCAT UHF radar, with simultaneous IMP-8 measurements of the solar wind and interplanetary magnetic field (IMF) upstream of the Earth’s magnetosphere, in order to examine the response time of the ionospheric flow to changes in the north-south component of the IMF (Bz). In calculating the flow response delay, the time taken by field changes observed by the spacecraft to first effect the ionosphere has been carefully estimated and subtracted from the response time. Two analysis methods have been employed. In the first, the flow data were divided into 2 h-intervals of magnetic local time (MLT) and cross-correlated with the “half-wave rectifier” function V2Bs, where V is the solar wind speed, and Bs is equal to IMF Bz if the latter is negative, and is zero otherwise. Response delays, determined from the time lag of the peak value of the cross-correlation coefficient, were computed versus MLT for both the east-west and north-south components of flow. The combined data set suggests minimum delays at ∼1400 MLT, with increased response times on the nightside. For the 12-h sector centred on 1400 MLT, the weighted average response delay was found to be 1.3 ± 0.8 min, while for the 12-h sector centred on 0200 MLT the weighted average delay was found to increase to 8.8 ± 1.7 min. In the second method we first inspected the IMF data for sharp and enduring (at least ∼5 min) changes in polarity of the north-south component, and then examined concurrent EISCAT flow data to determine the onset time of the corresponding enhancement or decay of the flow. For the case in which the flow response was timed from whichever of the flow components responded first, minimum response delays were again found at ∼1400 MLT, with average delays of 4.8 ± 0.5 min for the 12-h sector centred on 1400 MLT, increasing to 9.2 ± 0.8 min on the nightside. The response delay is thus found to be reasonably small at all local times, but typically ∼6 min longer on the nightside compared with the dayside. In order to make an estimate of the ionospheric information propagation speed implied by these results, we have fitted a simple theoretical curve to the delay data which assumes that information concerning the excitation and decay of flow propagates with constant speed away from some point on the equatorward edge of the dayside open-closed field line boundary, taken to lie at 77° magnetic latitude. For the combined cross-correlation results the best-fit epicentre of information propagation was found to be at 1400 MLT, with an information propagation phase speed of 9.0 km s−1. For the combined event analysis, the best-fit epicentre was also found to be located at 1400 MLT, with a phase speed of 6.8 km s−1.  相似文献   

3.
The polar geomagnetic activity resulting from solar wind–magnetosphere interactions can be characterized the Polar Cap (PC) indices, PCN and PCS. PC index values are derived from polar magnetic variations calibrated on a statistical basis such that the index approximate values in units of mV/m of the interplanetary “geo-effective” (or “merging”) electric field (EM) conveyed by the solar wind. The timing and amplitude relations of the PC index to solar wind plasma and magnetic field parameters are reported. The solar wind effects are parameterized in terms of the geo-effective electric field (EM) and the dynamical pressure (PDYN). The PC index has a delayed and damped response to EM variations and display saturation-like effects for EM values exceeding 10 mV/m. Steady or slowly varying levels of solar wind dynamical pressure have little or no impact on the PC index above the effects related to EM for which the solar wind velocity is also a factor. Sharp increases in the dynamical pressure generate impulsive variations in the PC index comprising a initial negative impulse of 5–10 min duration followed by a positive impulse lasting 10–20 min. Typical amplitudes of both the negative and the positive impulses are 0.2–0.5 units. A sharp decrease in the pressure produces the inverse sequence of pulses in the PC index. Auroral substorm activity represented by the AL index level has a marked influence on the average PC/EM level at the transition from very quiet (AL0 nT) to disturbed conditions while more or less disturbed conditions (AL<100 nT) have no systematic effect on the average PC/EM values. At distinct substorm events the PC/EM ratio has a minimum (0.8) in the pre-onset phase at around 20 min before substorm onset. The average ratio gradually increases in the expansion phase to reach a maximum value (1.1) at around 40 min after substorm onset (or 20 min after the largest (negative) peak in AL). At substorm recovery during the next 2 h the PC/EM ratio decreases. Finally, we report on the application of polar magnetic variations to model the disturbance storm time (Dst) index development during magnetic storms by using the PC index as a source function to quantify the energy input to the ring current representing accumulated storm energy and characterized by the Dst index.  相似文献   

4.
5.
We present both statistical and case studies of magnetosheath interaction with the high-latitude magnetopause on the basis of Interball-1 and other ISTP spacecraft data. We discuss those data along with recently published results on the topology of cusp-magnetosheath transition and the roles of nonlinear disturbances in mass and energy transfer across the high-latitude magnetopause. For sunward dipole tilts, a cusp throat is magnetically open for direct interaction with the incident flow that results in the creation of a turbulent boundary layer (TBL) over an indented magnetopause and downstream of the cusp. For antisunward tilts, the cusp throat is closed by a smooth magnetopause; demagnetized ‘plasma balls’ (with scale ∼ few RE, an occurrence rate of ∼25% and trapped energetic particles) present a major magnetosheath plasma channel just inside the cusp. The flow interacts with the ‘plasma balls’ via reflected waves, which trigger a chaotization of up to 40% of the upstream kinetic energy. These waves propagate upstream of the TBL and initiate amplification of the existing magnetosheath waves and their cascade-like decays during downstream passage throughout the TBL. The most striking feature of the nonlinear interaction is the appearance of magnetosonic jets, accelerated up to an Alfvenic Mach number of 3. The characteristic impulsive local momentum loss is followed by decelerated Alfvenic flows and modulated by the TBL waves; momentum balance is conserved only on time scales of the Alfvenic flows (1/fA ∼12 min). Wave trains at fA∼1.3 mHz are capable of synchronizing interactions throughout the outer and inner boundary layers. The sonic/Alfvenic flows, bounded by current sheets, control the TBL spectral shape and result in non-Gaussian statistical characteristics of the disturbances, indicating the fluctuation intermittency. We suggest that the multi-scale TBL processes play at least a comparable role to that of macro-reconnection (remote from or in the cusp) in solar wind energy transformation and population of the magnetosphere by the magnetosheath plasma. Secondary micro-reconnection constitutes a necessary chain at the small-scale (∼ion gyroradius) edge of the TBL cascades. The thick TBL transforms the flow energy, including deceleration and heating of the flow in the open throat, ‘plasma ball’ and the region downstream of the cusp.  相似文献   

6.
The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM) anisotropic Ohm’s law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD) simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances) appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential , the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute by solving the equation that is the IM Ohm’s law boundary condition. Then is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary conditions for the MHD simulation which is then used to compute a new field-aligned current density. This process is iterated at each time step. The required Hall and Pedersen conductances may be determined by any method of choice, and may be specified anew at each time step. In this sense the coupling between the ionosphere and magnetosphere may be taken into account in a self-consistent manner.  相似文献   

7.
We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from X ≅ −15 to −40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz ≅ 0 nT). We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these “exodus channels”. The time profiles for energetic protons and “tracer” O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM= 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.  相似文献   

8.
The relation of the maximal daily average values of the relativistic electron fluxes with an energy higher than 2 MeV, obtained from the measurements on GOES geostationary satellites, during the recovery phase of magnetic storms to the solar wind parameters and magnetospheric activity indices has been considered. The parameters of Pc5 and Pi1 geomagnetic pulsations and the relativistic electron fluxes during the prestorm period and the main phase of magnetic storms have been used together with the traditional indices of geomagnetic activity (A E, K p, D st). A simple model for predicting relativistic electron fluxes has been proposed for the first three days of the magnetic storm recovery phase. The predicted fluxes of the outer radiation belt relativistic electrons well correlate with the observed values (R ∼ 0.8–0.9).  相似文献   

9.
The vertical geoelectric field measured at Vostok, Antarctica (78.5°S, 107°E, L=75.0) over the 13 month interval May 1979–May 1980 is correlated with the interplanetary magnetic field (IMF) components By and Bz at times when Vostok is connected to the dayside magnetosphere. No significant association with IMF Bx is found. The interaction of the solar wind and the Earth’s magnetic field generally results in anti-sunward plasma flow in the high-latitude, polar ionosphere driven by a dawn-to-dusk, cross polar cap potential difference pattern. Using the IZMEM model to infer the contribution of the cross polar cap potential difference to the potential difference between the ionosphere and the ground at Vostok for the measured IMF conditions, we show that this provides a viable mechanism for the IMF associations found. We demonstrate that the direct association of the geoelectric field with the cross polar cap potential difference is independent of a result (Park, 1976. Solar magnetic sector effects on the vertical atmospheric electric field at Vostok, Antartica. Geophysical Research Letters 3(8), 475–478) showing an 15% decrease in the vertical geoelectric field measured at Vostok, 1–3 days after the passage of IMF sector boundaries. Evidence is also presented supporting the Park result, for which a mechanism is yet to be confirmed.  相似文献   

10.
Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also pronortional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.  相似文献   

11.
The dominant interplanetary phenomena that are frequently associated with intense magnetic storms are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two such interplanetary structures, involving an intense and long duration Bs component of the IMF are: the sheath region behind a fast forward interplanetary shock, and the CME ejecta itself. Frequently, these structures lead to the development of intense storms with two-step growth in their main phases.These structures, when combined, lead sometimes to the development of very intense storms, especially when an additional interplanetary shock is found in the sheath plasma of the primary structure accompanying another stream. The second stream can also compress the primary cloud, intensifying the Bs field, and bringing with it an additional Bs structure. Thus, at times very intense storms are associated with three or more Bs structures.Another aspect that can contribute to the development of very intense storms refers to the recent finding that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense magnetospheric energization.  相似文献   

12.
The dependence of the maximal values of the |Dst| and AE geomagnetic indices observed during magnetic storms on the value of the interplanetary electric field (E y ) was studied based on the catalog of the large-scale solar wind types created using the OMNI database for 1976–2000 [Yermolaev et al., 2009]. An analysis was performed for eight categories of magnetic storms caused by different types of solar wind streams: corotating interaction regions (CIR, 86 storms); magnetic clouds (MC, 43); Sheath before MCs (ShMC, 8); Ejecta (95); Sheath (ShE, 56); all ICME events (MC + Ejecta, 138); all compression regions Sheaths before MCs and Ejecta (ShMC + ShE, 64); and an indeterminate type of storm (IND, 75). It was shown that the |Dst| index value increases with increasing electric field E y for all eight types of streams. When electric fields are strong (E y > 11 mV m−1), the |Dst| index value becomes saturated within magnetic clouds MCs and possibly within all ICMEs (MC + Ejecta). The AE index value during magnetic storms is independent of the electric field value E y for almost all streams except magnetic clouds MCs and possibly the compressed (Sheath) region before them (ShMC). The AE index linearly increases within MC at small values of the electric field (E y < 11 mV m−1) and decrease when these fields are strong (E y > 11 mV m−1). Since the dynamic pressure (Pd) and IMF fluctuations (σB) correlate with the E y value in all solar wind types, both geomagnetic indices (|Dst| and AE) do not show an additional dependence on Pd and IMF δB. The nonlinear relationship between the intensities of the |Dst| and AE indices and the electric field E y component, observed within MCs and possibly all ICMEs during strong electric fields E y , agrees with modeling the magnetospheric-ionospheric current system of zone 1 under the conditions of the polar cap potential saturation.  相似文献   

13.
We present two case studies in the night and evening sides of the auroral oval, based on plasma and field measurements made at low altitudes by the AUREOL-3 satellite, during a long period of stationary magnetospheric convection (SMC) on November 24, 1981. The basic feature of both oval crossings was an evident double oval pattern, including (1) a weak arc-type structure at the equatorial edge of the oval/polar edge of the diffuse auroral band, collocated with an upward field-aligned current (FAC) sheet of ≈1.0 μA m−2, (2) an intermediate region of weaker precipitation within the oval, (3) a more intense auroral band at the polar oval boundary, and (4) polar diffuse auroral zone near the polar cap boundary. These measurements are compared with the published magnetospheric data during this SMC period, accumulated by Yahnin et al. and Sergeev et al., including a semi-empirical radial magnetic field profile BZ in the near-Earth neutral sheet, with a minimum at about 10–14 RE. Such a radial BZ profile appears to be very similar to that assumed in the “minimum B/cross-tail line current” model by Galperin et al. (GVZ92) as the “root of the arc”, or the arc generic region. This model considers a FAC generator mechanism by Grad-Vasyliunas-Boström-Tverskoy operating in the region of a narrow magnetic field minimum in the near-Earth neutral sheet, together with the concept of ion non-adiabatic scattering in the “wall region”. The generated upward FAC branch of the double sheet current structure feeds the steady auroral arc/inverted-V at the equatorial border of the oval. When the semi-empirical BZ profile is introduced in the GVZ92 model, a good agreement is found between the modelled current and the measured characteristics of the FACs associated with the equatorial arc. Thus the main predictions of the GVZ92 model concerning the “minimum-B” region are consistent with these data, while some small-scale features are not reproduced. Implications of the GVZ92 model are discussed, particularly concerning the necessary conditions for a substorm onset that were not fulfilled during the SMC period.  相似文献   

14.
Quasi-periodic Pc 5 pulsations have been reported inside and just outside the Earth’s magnetotail during intervals of low geomagnetic activity. In order to further define their characteristics and spatial extent, we present three case studies of simultaneous magnetic field and plasma observations by IMP-8, ISEE-1 (and ISEE-2 in one case) in the Earth’s magnetotail and ISEE-3 far upstream of the bow shock, during intervals in which the spacecraft were widely separated. In the first case study, similar pulsations are observed by IMP-8 at the dawn flank of the plasma sheet and by ISEE-1 near the plasma sheet boundary layer (PSBL) near midnight local time. In the second case study, simultaneous pulsations are observed by IMP-8 in the dusk magnetosheath and by ISEE-1 and 2 in the dawn plasma sheet. In the third case study, simultaneous pulsations are observed in the north plasma sheet boundary layer and the south plasma sheet. We conclude that the pulsations occur simultaneously throughout much of the nightside magnetosphere and the surrounding magnetosheath, i.e. that they have a global character. Some additional findings are the following: (a) the observed pulsations are mixed mode compressional and transverse, where the compressional character is more apparent in the close vicinity of the plane ZGSM=0; (b) the compressional pulsations of the magnetic field in the dusk magnetosheath show peaks that coincide (almost one-to-one) with similar peaks observed inside the dawn plasma sheet; (c) in the second case study the polarization sense of the magnetic field and the recurrent left-hand plasma vortices observed in the dawn plasma sheet are consistent with antisunward moving waves on the magneto-pause; (d) pulsation amplitudes are weaker in the PSBL(or lobe) as compared with those in the magneto-tail’s flanks, suggesting a decay with distance from the magnetopause; (e) the thickness of the plasma sheet (under extremely quiet conditions) is estimated to be \sim22 RE at an average location of (X, Y)GSM=(16, 17) RE, whereas at midnight local time the thickness is \sim14 RE. The detected pulsations are probably due to the pressure variations (recorded by ISEE-3) in the solar wind, and/or the Kelvin Helmholtz instability in the low-latitude boundary layer or the magnetopause due to a strongly northward IMF.  相似文献   

15.
It is shown that the interaction of the interplanetary magnetic field (IMF), when it has southward component, with the geomagnetic field leads to the formation of an enhanced pressure layer (EPL) near the magnetopause. Currents flowing on the boundary between the EPL and the magnetosheath prevent the IMF from penetrating the magnetosphere. However, the outward boundary of the EPL is unstable. The interchange instability permanently destroys the EPL. Separate filaments of the EPL move away from the Earth. New colder plasma of the magnetosheath with a frozen magnetic field replaces the hotter EPL plasma, and the process of EPL formation and destruction repeats itself.The instability increment is calculated for various magnitudes of the azimuthal wave number, ky, and curvature radius of the magnetic field lines, Rc. The disturbances with R−1e\leqky\leq4R−1e (where Re is the Earth’s radius) and Rc\simeqRe are the most unstable.A possible result of the interchange instability of the EPL may be patchy reconnection, displayed as flux transfer events (FTEs) near the magnetopause.  相似文献   

16.
The paper analyses the development of the main phase of magnetic storms with Dst ≤ −50 nT, the interplanetary source of which consists of eight types of solar wind streams: magnetic clouds (MC, 17 storms); corotating interaction regions (CIR, 49 storms); Ejecta (50 storms); compressed region (Sheath) before Ejecta ShE (34 storms); the Sheath before a magnetic cloud ShMC (6 storms); all Sheath before all ICME, ShE + ShMC (40 storms); all ICME, MC + Ejecta (67 storms); and an indeterminate type of stream IND (34 storms).  相似文献   

17.
We have analysed a database of 300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude) by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (2100/0300 MLT), but also pre-dusk (1600/1700 MLT), which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20/30 m s–1 nT–1 in the midnight sector, and smaller, 10/20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than 5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a penetrating component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence of zonal perturbation flows which are generally directed eastward in the Northern Hemisphere for IMF By positive and westward for IMF By negative at all local times. However, although the day and night effects are therefore similar in principle, the model perturbation flows are much larger on the nightside than on the dayside, as observed, due to the day-night asymmetry in the unperturbed magnetospheric magnetic field. Overall, the model results are found to account well for the observed IMF By-related flow perturbations in the midnight sector, in terms of the sense and direction of the flow, the local time of their occurrence, as well as the magnitude of the flows (provided the magnetic model employed is not too distorted from dipolar form). At other local times the model predicts much smaller IMF By-related flow perturbations, and thus does not account for the effects observed in the pre-dusk sector.  相似文献   

18.
We present data from conjugate SuperDARN radars describing the high-latitude ionospheres response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period) on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is 8/12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line) due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.  相似文献   

19.
Shear flow instability arising from the velocity shear between the inner and the outer central plasma sheet regions is studied by treating the plasma as compressible. Based on the linearized MHD equations, dispersion relations for the surface wave modes occurring at the boundary of the inner central plasma sheet (ICPS) and the outer central plasma sheet (OCPS) are derived. The growth rates and the eigenmode frequencies are obtained numerically. Three data sets consisting of parameters relevant to the earth’s magnetotail are considered. The plasma sheet region is found to be stable for constant plasma flows unless MA>9.6, where MA is the Alfvén Mach number in the ICPS. However, for a continuously varying flow velocity profile in the ICPS, the instability is excited for MA\geq1.4. The excited modes have oscillation periods of 2–10 min and 1.5–6 s, and typical transverse wavelengths of 30–100 RE and 0.5–6 RE for data sets 1 and 2 (i.e., case of no neutral sheet) respectively. For the data set 3, which corresponds to a neutral sheet at the center of the plasma sheet, the excited oscillations have periods of 2 s-1 min with transverse wavelengths of 0.02–1 RE.  相似文献   

20.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号