首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In a previous paper (Voglis et al., Paper I), we demonstrated that, in a rotating galaxy with a strong bar, the unstable asymptotic manifolds of the short-period family of unstable periodic orbits around the Lagrangian points L 1 or L 2 create correlations among the apocentric positions of many chaotic orbits, thus supporting a spiral structure beyond the bar. In this paper, we present evidence that the unstable manifolds of all the families of unstable periodic orbits near and beyond corotation contribute to the same phenomenon. Our results refer to a N -body simulation, a number of drawbacks of which, as well as the reasons why these do not significantly affect the main results, are discussed. We explain the dynamical importance of the invariant manifolds as due to the fact that they produce a phenomenon of 'stickiness' slowing down the rate of chaotic escape in an otherwise non-compact region of the phase space. We find a stickiness time of the order of 100 dynamical periods, which is sufficient to support a long-living spiral structure. Manifolds of different families become important at different ranges of values of the Jacobi constant. The projections of the manifolds of all the different families in the configuration space produce a pattern due to the 'coalescence' of the invariant manifolds. This follows closely the maxima of the observed   m = 2  component near and beyond corotation. Thus, the manifolds support both the outer edge of the bar and the spiral arms.  相似文献   

5.
We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disc and massive H  i gas content. Radio continuum observations of the galaxy were carried out at 320, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disc at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with active galactic nucleus (AGN) activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the Hα flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centres can host significant AGN activity. We also mapped the H  i gas disc and velocity field in PGC 045080. The H  i disc extends well beyond the optical disc and appears warped. In the H  i intensity maps, the disc appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disc but is fairly uniform in the other half. We derived the H  i rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of ∼190 km s−1.  相似文献   

6.
The frequency of barred spiral galaxies as a function of redshift contains important information on the gravitational influence of stellar discs in their dark matter haloes and may also distinguish between contemporary theories for the origin of galactic bulges. In this paper we present a new quantitative method for determining the strength of barred spiral structure, and verify its robustness to redshift-dependent effects. By combining galaxy samples from the Hubble Deep Field North with newly available data from the Hubble Deep Field South, we are able to define a statistical sample of 46 low-inclination spiral systems with I 814 W<23.2 mag. Analysing the proportion of barred spiral galaxies seen as a function of redshift, we find a significant decline in the fraction of barred spirals with redshift. The redshift distribution of 22 barred and 24 non-barred spirals with suitable inclinations is inconsistent with their being drawn from the same distribution at the 99 per cent confidence level. The physical significance of this effect remains unclear, but several possibilities include dynamically hotter (or increasingly dark-matter-dominated) high-redshift discs, or an enhanced efficiency in bar destruction at high redshifts. By investigating the formation of the 'orthogonal' axis of Hubble's classification tuning fork, our result complements studies of evolution in the early–late sequence, and pushes to later epochs the redshift at which the Hubble classification sequence is observed to be in place.  相似文献   

7.
Using high signal-to-noise ratio VLT/FORS2 long-slit spectroscopy, we have studied the properties of the central stellar populations and dynamics of a sample of S0 galaxies in the Fornax cluster. The central absorption-line indices in these galaxies correlate well with the central velocity dispersions (σ0) in accordance with what previous studies found for elliptical galaxies. However, contrary to what it is usually assumed for cluster ellipticals, the observed correlations seem to be driven by systematic age and α-element abundance variations, and not changes in overall metallicity. We also found that the observed scatter in the index–σ0 relations can be partially explained by the rotationally supported nature of these systems. Indeed, even tighter correlations exist between the line indices and the maximum circular velocity of the galaxies. This study suggests that the dynamical mass is the physical property driving these correlations, and for S0 galaxies such masses have to be estimated assuming a large degree of rotational support. The observed trends imply that the most massive S0s have the shortest star formation time-scales and the oldest stellar populations.  相似文献   

8.
We use oblate axisymmetric dynamical models including dark haloes to determine the orbital structure of intermediate mass to massive early-type galaxies in the Coma galaxy cluster. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 per cent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models, we show that flattening by stellar anisotropy maximizes the entropy for a given density distribution. Collisionless disc merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of discs unless the influence of dissipational processes was significant.  相似文献   

9.
10.
We present an analysis of 3D spectra of Mrk 533, observed with the integral-field spectrograph MultiPupil Fiber Spectrograph (MPFS) and using the Fabry-Perot Interferometer (FPI) of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) 6-m telescope. We found emissions of gas from the active type 2 Seyfert nucleus in the centre and also from the H  ii regions in a spiral structure and a circumnuclear region. The gas kinematics shows regular non-circular motions in the wide range of galactocentric distances from 500 pc up to 15 kpc. The maps of inward and outward radial motions of the ionized gas were constructed. We found that the narrow-line region (NLR) is composed of at least two (probably three) kinematically separated regions. We detect a stratification in the NLR of Mrk 533 with the outflow velocity ranging from 20–50 km s−1 to 600–700 km s−1, respectively, on the radial distances of ∼2.5 and ∼1.5 kpc. The maximal outflow velocity comes from the nucleus and corresponds to the position of the observed radio structure, which is assumed to be created in an approaching jet. We suggest that these ionized gas outflows are triggered by the radio jet intrusion in an ambient medium.  相似文献   

11.
12.
The TAURUS-2 Fabry–Perot interferometer, mounted on the 3.9-m Anglo-Australian Telescope, has been used to observe the Circinus galaxy. We have mapped the intensity and velocity distribution of the ionized hydrogen in the galaxy using the Balmer series Hα spectral line.
The semiresolved core (observed with a seeing disc of 30 pc) appears amorphous in shape, which is commonly observed in Seyfert 2 galaxies. Its peak coincides with the core position measured in the radio continuum, suggesting that ionized gas surrounds a non-thermal source.
A circumnuclear ring or spiral of radius 220 pc and a rotational velocity of 350 km s−1 (assuming circular motions) surrounds the core. The inclination angle of this feature, i =40°±10°, is less than that of the previously observed radio continuum disc. The velocity channel maps obtained for the Hα ring show that the kinematics resemble those of a rotating ring and the intensity displays a complex structure indicative of several, unresolved, H II regions. We believe the ring to represent a circumnuclear starburst.
Our Hα data also show the presence of the previously detected [O III ] ionization cone to the north-west of the core, measuring more than 400 pc in length. We suggest that the ionization cone lies in a different plane from that of the starburst ring and is directed away from us. Several kinematic components of the core are derived and we calculate an outflow velocity in excess of 150–200 km s−1 for gas above the core of Circinus. We also present evidence for inflowing ionized gas at the centre of Circinus.
The correlation of the Hα and radio continuum features is discussed, as well as the possible presence of a starburst-driven superwind in the Circinus galaxy.  相似文献   

13.
We study the location of massive disc galaxies on the Tully–Fisher (TF) relation. Using a combination of K -band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global H  i profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km s−1 lie systematically to the right of the relation defined by less massive systems, causing a characteristic 'kink' in the relations. Massive, early-type disc galaxies in particular have a large offset, up to 1.5 mag, from the main relation defined by less massive and later-type spirals.
The presence of a change in slope at the high-mass end of the TF relation has important consequences for the use of the TF relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z ≈ 1 may have been significantly larger than estimated in several recent studies.
We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the TF relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.  相似文献   

14.
15.
16.
We present the results of a Very Large Telescope observing programme carried out in service mode using fors 1 on ANTU (UT1) in long slit mode to determine the optical velocities of nearby low surface brightness galaxies. Outlying Local Group galaxies are of paramount importance in placing constraints on the dynamics and thus on both the age and the total mass of the Local Group. Optical velocities are also necessary to determine if the observations of H  i gas in and around these systems are the result of gas associated with these galaxies or a chance superposition with high-velocity H  i clouds or the Magellanic Stream. The data were of a sufficient signal-to-noise ration to enable us to obtain a reliable result in one of the galaxies we observed – Antlia – for which we have found an optical heliocentric radial velocity of 351±15 km s−1.  相似文献   

17.
18.
19.
In a former paper, we have presented spectra of 64 active, nine normal and five starburst galaxies in the region around the near-infrared calcium triplet (CaT) absorption lines and the [S  iii ]λ9069 line. In the present paper, we analyse the CaT strength ( W CaT) and kinematical products derived in that study, namely stellar  (σ)  and ionized gas (σgas) velocity dispersions. Our main results may be summarized as follows. (1) Type 2 Seyfert galaxies show no sign of dilution in W CaT with respect to the values spanned by normal galaxies, even when optical absorption lines such as the Ca  ii K band at 3933 Å are much weaker than in old, bulge-like stellar populations. (2) The location of type 2 Seyfert galaxies in the   W CaT– W CaK  plane is consistent with evolutionary synthesis models. The implication is that the source responsible for the dilution of optical lines in these active galactic nuclei (AGN) is a young stellar population, rather than an AGN featureless continuum, confirming the conclusion of the pioneer study of Terlevich, Díaz & Terlevich. (3) In type 1 Seyfert galaxies, both   W [S  iii ]  and W CaT tend to be diluted due to the presence of a non-stellar component, in agreement with the unification paradigm. (4) A comparison of  σ  with σgas (obtained from the core of the [S  iii ] emitting line) confirms the existence of a correlation between the typical velocities of stars and clouds of the narrow line region. The strength and scatter around this correlation are similar to those previously obtained from the [O  iii ]λ5007 linewidth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号