首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Velocity variability at scales smaller than the size of a solute plume enhances the rate of spreading of the plume around its center of mass. Macroscopically, the rate of spreading can be quantified through macrodispersion coefficients, the determination of which has been the subject of stochastic theories. This work compares the results of a volume-averaging approach with those of the advection dominated large-time small-perturbation theory of Dagan [1982] and Gelhar and Axness [1983]. Consider transport of an ideal tracer in a porous medium with deterministic periodic velocity. Using the Taylor-Aris-Brenner method of moments, it has been previously demonstrated [Kitanidis, 1992] that when the plume spreads over an area much larger than the period, the volume-averaged concentration satisfies the advection-dispersion equation with constant coefficients that can be computed. Here, the volume-averaging analysis is extended to the case of stationary random velocities. Additionally, a perturbation method is applied to obtain explicit solutions for small-fluctuation cases, and the results are compared with those of the stochastic macrodispersion theory. It is shown that the method of moments, which uses spatial averaging, for sufficiently large volumes of averaging yields the same result as the stochastic theory, which is based on ensemble averaging. The result is of theoretical but also practical significance because the volume-averaging approach provides a potentially efficient way to compute macrodispersion coefficients. The method is applied to a simplified representation of the Borden aquifer. Received: December 28, 1998  相似文献   

2.
The salinization process of the Israeli Coastal aquifer has led to an average concentration of about 200 mgCl/l with a significant number of discrete salinity plumes in the middle and southern regions. The salinity of these plumes is high (500–1000 mgCl/l) and is increasing rapidly. Geochemical evidence has suggested that the salinity source in the Be'er Tuvia plume (in the south part of the aquifer) is at the bottom of the aquifer. This paper describes a solution of the source inverse problem and its application in the Be'er Tuvia plume. A transient two-dimensional finite element model was solved and the source terms were computed at each node in a 14×14 km2 area. An error analysis has shown that when no errors are introduced in the input data the reconstruction is perfect. The results of a sensitivity analysis are presented and the actual reconstruction errors are estimated. Applying the model in the Be'er Tuvia region indicates that a salinity source exists about 1 km to the west and 1.5 km to the north of the center of the salinity plume. This source is believed to be the plume source.  相似文献   

3.
《Advances in water resources》2007,30(6-7):1668-1679
Under steady-state conditions, the degradation of contaminant plumes introduced continuously into an aquifer is controlled by transverse dispersion when the other reacting compound is provided from ambient groundwater. Given that the reaction is instantaneous and longitudinal dispersion can be neglected, the length of the plume is inversely proportional to the transverse dispersion coefficient. In typical scenarios of natural attenuation, however, the considered reaction is biotic and kinetic. The standard model of bioreactive transport relies on double-Monod kinetics and pseudo first-order biomass decay. Under these conditions, a fraction of the injected mass flux remains beyond the length of the plume determined for the instantaneous reaction. We present an analytical framework to derive the steady-state concentration distributions of the dissolved compounds and the biomass from the concentration distribution of a conservative compound, assuming double-Monod kinetics and two different models describing biomass decay. The first biomass-decay model assumes a constant first-order decay coefficient, while the second assumes that the decay coefficient depends upon the electron-acceptor concentration. We apply the method to the case of a line-injection in two-dimensional uniform flow. In general, the bioreactive concentration distributions are similar to the distributions computed for an instantaneous reaction. The similarity is greater when the biomass decay coefficient is assumed to depend on the electron-acceptor concentration rather than being constant.  相似文献   

4.
At three industrial sites in Ontario, New Hampshire, and Florida, tetrachloroethylene (PCE) and trichloroethylene (TCE), released decades ago as dense nonaqueous phase liquids (DNAPLs), now form persistent source zones for dissolved contaminant plumes. These zones are suspended below the water table and above the bottoms of their respective, moderately homogeneous, unconfined sandy aquifers. Exceptionally detailed, depth-discrete, ground water sampling was performed using a direct-push sampler along cross sections of the dissolved-phase plumes, immediately downgradient of these DNAPL source zones. The total plume PCE or TCE mass-discharge through each cross section ranged between 15 and 31 kg/year. Vertical ground water sample spacing as small as 15 cm and lateral spacing typically between 1 and 3 m revealed small zones where maximum concentrations were between 1% and 61% of solubility. These local maxima are surrounded by much lower concentration zones. A spacing no larger than 15 to 30 cm was needed at some locations to identify high concentration zones, and aqueous VOC concentrations varied as much as four orders of magnitude across 30 cm vertical intervals. High-resolution sampling at these sites showed that three-quarters of the mass-discharge occurs within 5% to 10% of the plume cross sectional areas. The extreme spatial variability of the mass-discharge occurs even though the sand aquifers are nearly hydraulically homogeneous. Depth-discrete field techniques such as those used in this study are essential for finding the small zones producing most of the mass-discharge, which is important for assessing natural attenuation and designing remedial options.  相似文献   

5.
A natural gradient tracer test using perdeuterated MTBE was conducted in an anaerobic aquifer to determine the relative importance of dispersion and degradation in reducing MTBE concentrations in ground water. Preliminary ground water chemistry and hydraulic conductivity data were used to place the tracer within an existing dissolved MTBE plume at Port Hueneme, California. Following one year of transport, the tracer plume was characterized in detail.
Longitudinal dispersion was identified as the dominant mechanism for lowering the perdeuterated MTBE concentrations. The method of moments was used to determine the longitudinal and lateral dispersion coefficients (0.85 m2/day and 0.08 m2/day, respectively). A mass-balance analysis, carried out after one year of transport, accounted for 110% of the injected mass and indicated that no significant mass loss occurred. The plume structure created by zones of higher and lower hydraulic conductivity at the site was complex, consisting of several localized areas of high tracer concentration in a lower concentration plume. This is important because the aquifer has generally been characterized as exhibiting fairly minor heterogeneity. In addition, the tracer plume followed a curved flowpath that deviated from the more macroscopic direction of ground water flow inferred from local ground water elevation measurements and the behavior of the existing plume. Understanding the mass balance, plume structure, curvature of the tracer plume, and consequently natural attenuation behavior required the detailed sampling approach employed in this study. These data imply that a detailed understanding of site hydrogeology and an extensive sampling network may be critical for the correct interpretation of monitored natural attenuation of MTBE.  相似文献   

6.
Cosler DJ 《Ground water》2004,42(2):203-222
Nonequilibrium concentration type curves are numerically developed and sensitivity analyses are performed to examine the relationships between effluent concentrations in partially penetrating monitoring/extraction wells, the vertical plume shape, and the mass transfer characteristics of the aquifer. The governing two-dimensional, axisymmetric nonequilibrium solute transport equation is solved in three stages using an operator-splitting approach. In the first two stages, the advection and dispersion terms are solved with the Eulerian-Lagrangian method, based on the backward method of characteristics for advection and the standard implicit Galerkin finite element method for dispersion. In the third step, the first-order, immobile-mobile domain mass transfer term is computed analytically for both two-site and lognormally distributed, multirate models. Effluent concentration variations with time and contour plots of the pore water concentration distribution in the aquifer are compared for a wide range of field- and laboratory-measured mass transfer rates, various plume shapes, and relevant physical/chemical parameter values, including pumping rate, vertical anisotropy ratio, retardation factor, and porosity. The simulation results show that rate-limited mass transfer can have a significant impact on sample and aquifer pore water concentrations during three-dimensional transport to a partially penetrating well. An alternative dimensionless form of the nonequilibrium solute transport equation is derived to illustrate the key parameter groupings that quantify rate-limited sorption effects and show the relative importance of individual parameters. A hypothetical field application example demonstrates the fitting of dimensional type curves to discrete-interval sampling data in order to evaluate the mass transfer characteristics of an aquifer and shows how type curve superposition can be used to model complex plume shapes.  相似文献   

7.
Standard methodologies for sampling the physicochemical conditions of groundwater recommend purging a bore for three bore volumes to avoid sampling the stagnant water within a bore and instead gain samples representative of the aquifer. However, there are currently no methodological standards addressing the amount of purging required to gain representative biological samples to assess groundwater bacterial and viral abundances. The objective of this study was to examine how bacterial and viral abundances change during the purging of bore volumes. Six bores infiltrating into unconfined aquifers were pumped for five or six bore volumes each and bacteria and virus‐like particles (VLPs) were enumerated from each bore volume using flow cytometry. In examination of the individual bores trends in bacterial abundances were observed to increase, decrease, or remain constant with each purged bore volume. Furthermore, triplicates taken at each bore volume indicated substantial variations in VLP and bacterial abundances that are often larger than the differences between bore volumes. This indicates a high level of small scale heterogeneity in microbial community abundance in groundwater samples, and we suggest that this may be an intrinsic feature of bore biology. The heterogeneity observed may be driven by bottom up processes (variability in the distribution of organic and inorganic nutrients), top‐down processes (grazing and viral lysis), physical heterogeneities in the bore, or technical artifacts associated with the purging process. We suggest that a more detailed understanding of the ecology underpinning this variability is required to adequately describe the microbiological characteristics of groundwater ecosystems.  相似文献   

8.
Conceptual model selection is a key issue in risk assessment studies. We analyze the effect of a number of conceptual aspects related to solute transport in two-dimensional heterogeneous media. The main issues addressed are non-ergodicity, anisotropy in the correlation structure of the transmissivity field, and dispersion at the local scale. In particular, we study the development of a solute plume when mean flow is oriented at an angle with respect to the principal directions of anisotropy. The study is carried out in a Lagrangian framework using Monte Carlo analysis. Of special interest is the evolution of individual plumes. A number of aspects are analyzed, namely the location of the center of mass for each plume and the different ways to compute the angles that the main axes of the plume develop with respect to the direction of the mean flow. Stochastic theories based upon ergodicity conclude that the plume gets oriented in the mean flow direction. In our non-ergodic simulations, the mean of the offset angles, for each individual plume in each particular realization, is offset from the mean flow direction towards the direction of maximum anisotropy. If, instead, the analysis is performed on the ensemble plume (superposition of all different simulations), it is then found oriented closer to the direction of the mean flow than the average offset angle for the different plumes considered separately. This last result adds an extra word of caution to the use of ensemble averaged values in solute transport studies. Serious implications for risk assessment follow from the conceptual model adopted. First, in any single realization there will a large uncertainty in locating the plume at any given time; second, real dilution would be less than what would be expected if the macrodispersion values obtained for ergodic conditions were applied; third, the volume that is affected by a non-zero concentration is smaller than that predicted from macrodispersion concepts; fourth, the orientation of the plume does not correspond to that of the mean flow; and fifth, accounting for local dispersion helps reducing uncertainty.  相似文献   

9.
The accurate measurement of suspended sediment (<200 μm) in aquatic environments is essential to understand and effectively manage changes to sediment, nutrient, and contaminant concentrations on both temporal and spatial scales. Commonly used sampling techniques for suspended sediment either lack the ability to accurately measure sediment concentration (e.g., passive sediment samplers) or are too expensive to deploy in sufficient number to provide landscape‐scale information (e.g., automated discrete samplers). Here, we evaluate a time‐integrated suspended sediment sampling technique, the pumped active suspended sediment (PASS) sampler, which collects a sample that can be used for the accurate measurement of time‐weighted average (TWA) suspended sediment concentration and sediment particle size distribution. The sampler was evaluated against an established passive time‐integrated suspended sediment sampling technique (i.e., Phillips sampler) and the standard discrete sampling method (i.e., manual discrete sampling). The PASS sampler collected a sample representative of TWA suspended sediment concentration and particle size distribution of a control sediment under laboratory conditions. Field application of the PASS sampler showed that it collected a representative TWA suspended sediment concentration and particle size distribution during high flow events in an urban stream. The particle size distribution of sediment collected by the PASS and Phillips samplers were comparable and the TWA suspended sediment concentration of the samples collected using the PASS and discrete sampling techniques agreed well, differing by only 4% and 6% for two different high flow events. We should note that the current configuration of the PASS sampler does not provide a flow‐weighted measurement and, therefore, is not suitable for the determination of sediment loads. The PASS sampler is a simple, inexpensive, and robust in situ sampling technique for the accurate measurement of TWA suspended sediment concentration and particle size distribution.  相似文献   

10.
Monte Carlo simulations are conducted to evaluate microbial-mediated contaminant reactions in an aquifer comprised of spatially variable microbial biomass concentrations, aquifer hydraulic conductivities, and initial electron donor/acceptor concentrations. A finite element simulation model is used that incorporates advection, dispersion, and Monod kinetic expressions to describe biological processes. Comparisons between Monte Carlo simulations of heterogeneous systems and simulations using homogeneous formulation of the same two-dimensional transport problem are presented. For the assumed set of parameters, physical aquifer heterogeneity is found to have a minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system; however, it noticeably changes the dispersion, skewness, and peakness of contaminant concentration distributions. Similarly, for low microbial growth rate, given favorable microbial growth characteristics, biological heterogeneity has minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system. On the other hand, when higher effective growth rates are assumed, biological heterogeneity and spatial heterogeneities in essential electron donor/acceptors reduce the efficiency of biotic contaminant reactions; consequently, model simulations derived from heterogeneous biomass distributions predict remediation time scales that are longer than those simulated for homogeneous systems. When correlations between physical aquifer and biological heterogeneities are considered, the assumed correlation affects predicted mean and variance of contaminant concentration and biomass distributions. For example, an assumed negative correlation between hydraulic conductivity and the initial biomass distribution produces a plume where less efficient biotic contaminant reactions occur at the leading edge of the plume; this is consistent with less degradation/transformation occurring over regions of higher groundwater velocities. However, the presence and absence of these correlations do not appear to affect the efficiency of microbial-mediated contaminant attenuation.  相似文献   

11.
Solute plume spreading in an aquifer exhibits a ‘scale effect’ if the second spatial concentration moment of a plume has a non-constant time-derivative. Stochastic approaches to modeling this scale effect often rely on the critical assumption that ensemble averages can be equated to spatial averages measured in a single field experiment. This ergodicity assumption should properly be evaluated in a strictly dynamical context, and this is done in the present paper. For the important case of trace plume convection by steady groundwater flow in an isotropic, heterogeneous aquifer, ergodicity does not obtain because of the existence of an invariant function on stream surfaces that is not uniform throughout the aquifer. The implications of this result for stochastic models of solute transport are discussed. © 1997 Elsevier Science Ltd. All rights reserved  相似文献   

12.
Under the assumption that local solute dispersion is negligible, a new general formula (in the form of a convolution integral) is found for the arbitrary k-point ensemble moment of the local concentration of a solute convected in arbitrary m spatial dimensions with general sure initial conditions. From this general formula new closed-form solutions in m=2 spatial dimensions are derived for 2-point ensemble moments of the local solute concentration for the impulse (Dirac delta) and Gaussian initial conditions. When integrated over an averaging window, these solutions lead to new closed-form expressions for the first two ensemble moments of thevolume-averaged solute concentration and to the corresponding concentration coefficients of variation (CV). Also, for the impulse (Dirac delta) solute concentration initial condition, the second ensemble moment of thesolute point concentration in two spatial dimensions and the corresponding CV are demonstrated to be unbound. For impulse initial conditions the CVs for volume-averaged concentrations axe compared with each other for a tracer from the Borden aquifer experiment. The point-concentration CV is unacceptably large in the whole domain, implying that the ensemble mean concentration is inappropriate for predicting the actual concentration values. The volume-averaged concentration CV decreases significantly with an increasing averaging volume. Since local dispersion is neglected, the new solutions should be interpreted as upper limits for the yet to be derived solutions that account for local dispersion; and so should the presented CVs for Borden tracers. The new analytical solutions may be used to test the accuracy of Monte Carlo simulations or other numerical algorithms that deal with the stochastic solute transport. They may also be used to determine the size of the averaging volume needed to make a quasi-sure statement about the solute mass contained in it.  相似文献   

13.
14.
Observation of dispersion in field situations has left three issues that may be better understood by applying advective transport phenomena. (1) In some experiments, the longitudinal dispersivity becomes constant with increasing pathlength and in other cases it remains growing. (2) Dispersivities reported from multiple comprehensive observations at a single site differ at similar pathlength in some cases more than a factor two. (3) The observed difference between the plume fronts and plume tails is not represented in the reported parameters. The analytic equations for advective transport phenomena at macroscale of De Lange (2020) describe the thickness of the affected flow-tube and the spread of the plume front and tail. The scale factor defines the size of the averaging domain and so of the initial phase. The new macroscale correlation coefficient relates the growth of the longitudinal dispersivity beyond the initial phase to the aquifer heterogeneity. Using stochastic parameters for the aquifer heterogeneity, the parameters are quantified at 14 field experiments in the United States, Canada and Europe enabling the comparison of calculated and reported final dispersivities. Using the quantified parameters, 146 reported and calculated dispersivities along the traveled paths show a good match. A dispersivity derived from the local plume growth may differ a factor of two from the aquifer-representative value. The growths of plume fronts and tails between two plume stages are assessed in 14 cases and compared to calculated values. Distinctive parameters for the plume front and tail support better understanding of field situations. A user-ready spreadsheet is provided.  相似文献   

15.
Close M  Bright J  Wang F  Pang L  Manning M 《Ground water》2008,46(6):814-828
Two large-scale (9.5 m long, 4.7 m wide, 2.6 m deep), three-dimensional artificial aquifers were constructed to investigate the influence of spatial variations in aquifer properties on contaminant transport. One aquifer was uniformly filled with coarse sand media (0.6 to 2.0 mm) and the other was constructed as a heterogeneous aquifer using blocks of fine, medium, and coarse sands. The key features of these artificial aquifers are described. An innovative deaeration tower was constructed to overcome a problem of the aquifers becoming blocked with excess air from the ground water source. A series of tracer injection experiments were conducted to test the homogeneity of the first aquifer that was purposely built as a homogeneous aquifer and to calculate values of aquifer parameters. Experimental data show that the aquifer is slightly heterogeneous, and hydraulic conductivity values are significantly higher down one side of the aquifer compared to the mean value. There was very good agreement in estimated dispersivity values between the plume area ratio methods and the curve fitting of tracer breakthrough curves. Dispersivity estimates from a full areal source injection (12.2 m2) experiment using a 1D analytical model were higher than estimates from a limited source injection (0.2 m2) experiment using a 3D model, possibly because the 1D model does not take account of the heterogeneity of hydraulic conductivity in the aquifer, thus overestimating dispersivity. Transverse and vertical dispersivity values were about five times less than the longitudinal dispersivity. There was slight sorption of Rhodamine WT onto the aquifer media.  相似文献   

16.
The installation of gas-filled diffusion samplers into small-diameter boreholes results in a significant reduction of the dissolved gas concentration around the sampler. In aquifers where the diffusive flux of solutes outpaces advective transport, the process that governs the equilibration time of a sampler is the resupply of solutes by diffusion from the aquifer. We have derived a solution that can be used to estimate the time required for a diffusion sampler to reach equilibrium with the dissolved gas concentration in the aquifer, where diffusion is the only solute transport mechanism. Thus the solutions provide equilibration times for cells placed in aquifers where diffusion dominates and maximum equilibration times for cells placed in aquifers where advection can also resupply solutes. The solutions are generic and are functions of nondimensionalized variables, therefore providing estimates of equilibration times for any type of solute, sampler volume, bore dimensions, and aquifer porosity. Examples are given for various sized gas-filled helium samplers placed in boreholes of different radii.  相似文献   

17.
The influence of source zone concentration reduction on solute plume detachment and recession times in fractured rock was investigated using new semianalytical solutions to transient solute transport in the presence of advection, dispersion, sorption, matrix diffusion, and first-order decay. Novel aspects of these solutions are: (1) the source zone concentration behavior is simulated using a constant concentration with the option for either an instantaneous reduction to zero concentration or an exponentially decaying source zone concentration initiated at some time (t*) after the source is introduced, and (2) different biodegradation rates in the fracture and rock matrix. These solutions were applied for sandstone bedrock and revealed that biodegradation in the matrix, not the fracture, may be the most significant attenuation mechanism and therefore may dictate remediation time scales. Also, instantaneous and complete source concentration reduction in aged plumes may not be beneficial with respect to plume response because back-diffusion can sustain plume migration for long periods of time. Moderate source zone concentration reduction has a similar impact on the rate of advance of the leading edge of the plume as aggressive concentration reduction. If the source zone concentration reduction half-life is less than the plume decay half-life, then volatile organic compound (VOC) mass sequestered in the rock matrix will ultimately dictate plume persistence and not the presence of the source zone.  相似文献   

18.
A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.  相似文献   

19.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

20.
Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma   总被引:1,自引:0,他引:1  
Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号