首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
卫星被动微波遥感土壤湿度,是准确分析大空间尺度上陆表水分变化信息的有效手段.美国航天局(NASA)发布的基于AMSR-E观测亮温资料的全球土壤湿度反演产品,在蒙古干旱区的实际精度并不令人满意.本文基于对地表微波辐射传输中地表粗糙度和植被层影响的简化处理方法,采用AMSR-E的6.9 GHz,10.7 GHz和18.7 GHz之V极化亮温资料,应用多频率反演算法,并以国际能量和水循环协同观测计划(The Coordinated Energy and Water Cycle Observations Project)即CEOP实验在蒙古国东部荒漠地区的地面实验资料作为先验知识,获取被动微波遥感模型的优化参数,以期获得蒙古干旱区精度更高的土壤湿度遥感估算结果.分析表明,本文方法反演的白天和夜间土壤湿度结果与地面验证值之间的均方根误差(RMSE)接近0.030 cm3/cm3, 证明所用方法在不需要其他辅助资料或参数帮助下,可较精确地反演干旱区表层土壤湿度信息,能够全天候、动态监测大空间尺度的土壤湿度变化,可为干旱区气候变化研究及陆面过程模拟和数据同化研究提供高精度的表层土壤湿度初始场资料.  相似文献   

3.
This study presents a soil moisture assimilation scheme, which could assimilate microwave brightness temperature directly, based on the ensemble Kalman filter and the shuffled complex evolution method (SCE-UA). It uses the soil water model of the land surface model CLM3.0 as the forecast operator, and a radiative transfer model (RTM) as the observation operator in the assimilation system. The assimilation scheme is implemented in two phases: the parameter calibration phase and the pure soil moisture assimilation phase. The vegetation optical thickness and surface roughness parameters in the RTM are calibrated by SCE-UA method and the optimal parameters are used as the final model parameters of the observation operator in the assimilation phase. The ideal experiments with synthetic data indicate that this scheme could significantly improve the simulation of soil moisture at the surface layer. Furthermore, the estimation of soil moisture in the deeper layers could also be improved to a certain extent. The real assimilation experiments with AMSR-E brightness temperature at 10.65 GHz (vertical polarization) show that the root mean square error (RMSE) of soil moisture in the top layer (0–10 cm) by assimilation is 0.03355 m3 · m−3, which is reduced by 33.6% compared with that by simulation (0.05052 m3 · m−3). The mean RMSE by assimilation for the deeper layers (10–50 cm) is also reduced by 20.9%. All these experiments demonstrate the reasonability of the assimilation scheme developed in this study.  相似文献   

4.
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important water cycle and agricultural applications. Recent work has demonstrated that thermal remote sensing estimates of surface radiometric temperature provide a complementary source of land surface information that can be used to define a robust proxy for root-zone (top 1 m of the soil column) soil moisture availability. In this analysis, we examine the potential benefits of simultaneously assimilating both microwave-based surface soil moisture retrievals and thermal infrared-based root-zone soil moisture estimates into a soil water balance model using a series of synthetic twin data assimilation experiments conducted at the USDA Optimizing Production Inputs for Economic and Environmental Enhancements (OPE3) site. Results from these experiments illustrate that, relative to a baseline case of assimilating only surface soil moisture retrievals, the assimilation of both root- and surface-zone soil moisture estimates reduces the root-mean-square difference between estimated and true root-zone soil moisture by 50% to 35% (assuming instantaneous root-zone soil moisture retrievals are obtained at an accuracy of between 0.020 and 0.030 m3 m−3). Most significantly, improvements in root-zone soil moisture accuracy are seen even for cases in which root-zone soil moisture retrievals are assumed to be relatively inaccurate (i.e. retrievals errors of up to 0.070 m3 m−3) or limited to only very sparse sampling (i.e. one instantaneous measurement every eight days). Preliminary real data results demonstrate a clear increase in the R2 correlation coefficient with ground-based root-zone observations (from 0.51 to 0.73) upon assimilation of actual surface soil moisture and tower-based thermal infrared temperature observations made at the OPE3 study site.  相似文献   

5.
The τω model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.  相似文献   

6.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Using remotely-sensed data, various soil moisture estimation models have been developed for bare soil areas. Previous studies have shown that the brightness temperature (BT) measured by passive microwave sensors were affected by characteristics of the land surface parameters including soil moisture, vegetation cover and soil roughness. Therefore knowledge of vegetation cover and soil roughness is important for obtaining frequent and global estimations of land surface parameters especially soil moisture.In this study, a model called Simultaneous Land Parameters Retrieval Model (SLPRM) that is an iterative least-squares minimization method is proposed. The algorithm estimates surface soil moisture, land surface temperature and canopy temperature simultaneously in vegetated areas using AMSR-E (Advance Microwave Scanning Radiometer-EOS) brightness temperature data. The simultaneous estimations of the three parameters are based on a multi-parameter inversion algorithm which includes model construction, calibration and validation using observations carried out for the SMEX03 (Soil Moisture Experiment, 2003) region in the South and North of Oklahoma.Roughness parameter has also been included in the algorithm to increase the soil parameters retrieval accuracy. Unlike other methods, the SLPRM method works efficiently in all land covers types.The study focuses on soil parameters estimation by comparing three different scenarios with the inclusion of roughness data and selects the most appropriate one. The difference between the resulted accuracies of scenarios is due to the roughness calculation approach.The analysis on the retrieval model shows a meaningful and acceptable accuracy on soil moisture estimation according to the three scenarios.The SLPRM method has shown better performance when the SAR (Synthetic Aperture RADAR) data are used for roughness calculation.  相似文献   

8.
Soil moisture is one of the important input variables in hydrological and water erosion models. The extraction of information on near surface soil moisture from synthetic aperture radar (SAR) is well established mostly for flat terrain and using low incidence angle single polarisation data. The ENVISAT advanced SAR (ASAR) data available in multiple incidence angles and alternate polarisation modes were investigated in this study for soil moisture estimation in sloping terrain. The test site was Sitla Rao watershed in the Lesser Himalayas of northern India. Empirical models were developed to estimate near surface soil moisture in bare agricultural fields using alternate polarisation ASAR data. Both soil moisture and surface roughness field measurements were performed during the satellite passes. Backscatter from medium incidence angle (IS‐4) and vertical‐vertical (VV) polarisation signal is correlated better with volumetric soil moisture content compared to other incidence angles. The model parameters were further improved, and soil moisture estimation was refined by combining medium incidence angle (IS4) vertical‐horizontal polarisation response as another variable along with VV polarisation response. The effect of slope on the radar backscatter was minimized by incorporating local incidence angles derived from an ASTER DEM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The soil freeze–thaw controls the hydrological and carbon cycling and thus affects water and energy exchanges at land surface. This article reported a newly developed algorithm for distinguishing the freeze/thaw status of surface soil. The algorithm was based on information from Advanced Microwave Scanning Radiometer Enhanced (AMSR‐E) which records brightness temperature (Tb) in the afternoon and after midnight. The criteria and discriminant functions were obtained from both radiometer observations and model simulations. First of all, the microwave radiation from freeze–thaw soil was examined by carrying out experimental measurements at 18·7 and 36·5 GHz using a Truck‐mounted Multi‐frequency Microwave Radiometer (TMMR) in the Heihe River of China. The experimental results showed that the soil moisture is a key component that differentiates the microwave radiation behaviours during the freeze–thaw process, and the differences in soil temperature and emissivity between frozen and thawed soils were found to be the most important criteria. Secondly, a combined model was developed to consider the impacts of complex ground surface conditions on the discrimination. The model simulations quite followed the trend of in situ observations with an overall relation coefficient (R) of approximately 0·88. Finally, the ratio of Tb18·7H (horizontally polarized Tb at 18·7 GHz) to Tb36·5V was considered primarily as the quasi‐emissivity, which is more reasonable and explicit in measuring the microwave radiation changes in soil freezing and thawing than the spectral gradient. By combining Tb36·5V to indicate the soil temperature variety, a Fisher linear discrimination analysis was used to establish the discriminant functions. After being corrected by TMMR measurements, the new discriminant algorithm had an overall accuracy of 86% when validated by 4‐cm soil temperature. The multi‐year discriminant results also provided a good agreement with the classification map of frozen ground in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Ya‐Qiu Jin  Fenghua Yan 《水文研究》2007,21(14):1918-1924
As an indication of the surface polarized emission, a polarization index (PI) of microwave radiance from the terrain surface (half‐space of canopy‐soil land) is derived from the radiative transfer model. This PI separates the radiance effects of the canopy‐soil moisture and interference from surface roughness and atmosphere, and is suitable to describe the change of terrain surface moisture, especially for extreme drought or flood conditions. As an example, the statistics of the monthly average < PI > from 6 years' data of the Defense Meteorological Satellite Program (DMSP) SSM/I observations at the lowest frequency 19·35 GHz channel as available are applied for the demonstration of the surface moisture status over a large and heterogeneous territory such as China. The deviation of the PI data at the same month from the average < PI > , i.e. ΔnPI(≡(PI? < PI>)/ < PI>), gives prominence to focusing moisture variation of terrain surface, and its anomaly shows possible drought or flood occurrence in extreme conditions. The ΔnPI mapping is validated by the typical examples of the drought in China's Shanxi area in May 2001 and the flood around China's Yangtze River in August 1998, respectively. Our approach is recommended for lower frequency channels to minimize the influence from vegetation canopy for future applications (such as the channels of the Advanced Microwave Scanning Radiometer [AMSR‐E] launched in May 2002 and microwave imaging radiometer of China's Fengyun satellite series). When the monthly < PI > and the ground truth of average volumetric moisture < mv > of the region are correctly evaluated, it is tractable to retrieve the soil land surface moisture by using the PI data at the same month and the same region without much knowledge of surface roughness, vegetation canopy and other factors. As an example, the retrieval of mv is favourably tested by using the Tropical Rainfall Measuring Mission (TRMM) Tropical Microwave Imager (TMI) data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The National Airborne Field Experiment 2006 (NAFE’06) was conducted during a three week period of November 2006 in the Murrumbidgee River catchment, located in southeastern Australia. One objective of NAFE’06 was to explore the suitability of the area for SMOS (Soil Moisture and Ocean Salinity) calibration/validation and develop downscaling and assimilation techniques for when SMOS does come on line. Airborne L-band brightness temperature was mapped at 1 km resolution 11 times (every 1–3 days) over a 40 by 55 km area in the Yanco region and 3 times over a 40 by 50 km area that includes Kyeamba Creek catchment. Moreover, multi-resolution, multi-angle and multi-spectral airborne data including surface temperature, surface reflectance (green, read and near infrared), lidar data and aerial photos were acquired over selected areas to develop downscaling algorithms and test multi-angle and multi-spectral retrieval approaches. The near-surface soil moisture was measured extensively on the ground in eight sampling areas concurrently with aircraft flights, and the soil moisture profile was continuously monitored at 41 sites. Preliminary analyses indicate that (i) the uncertainty of a single ground measurement was typically less than 5% vol. (ii) the spatial variability of ground measurements at 1 km resolution was up to 10% vol. and (iii) the validation of 1 km resolution L-band data is facilitated by selecting pixels with a spatial soil moisture variability lower than the point-scale uncertainty. The sensitivity of passive microwave and thermal data is also compared at 1 km resolution to illustrate the multi-spectral synergy for soil moisture monitoring at improved accuracy and resolution. The data described in this paper are available at www.nafe.unimelb.edu.au.  相似文献   

12.
In this paper fuzzy models are used as an alternative to describe groundwater flow in the unsaturated zone. The core of these models consists of a fuzzy rule-based model of the Takagi–Sugeno type. Various fuzzy clustering algorithms are compared in the data-driven identification of these Takagi–Sugeno models. The performance of the resulting fuzzy models is evaluated on the training surface on which they were identified, and on time series measurements of water content values obtained through an experiment carried out by the non-vegetated terrain (NVT) workgroup of the European Microwave Signature Laboratory (EMSL) (see [Mancini M, Hoeben R, Troch PA. Multifrequency radar observations of bare surface soil moisture content: a laboratory experiment. Water Resour Res 1999;35(6):1827–38] and [Hoeben R, Troch PA. Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour Res 2000;36(10):2805–19]). Despite higher errors at the borders of high water content values in the training surface, good results are obtained on the simulation of the time series.  相似文献   

13.
During a remote sensing field experiment conducted in the Southern Great Plains in 1997 (SGP97), tower and aircraft-based flux observations were collected over one of the main study sites in central Oklahoma. This is an agricultural region and contains primarily grassland/pasture and winter wheat, which was recently harvested leaving a significant number of fields either as wheat stubble or plowed bare soil. Multi-spectral data obtained by aircraft provided high-resolution (30 m) spatially-distributed vegetation cover and surface temperature information over the study area. The spatial variations in these surface states strongly affect the partitioning of surface fluxes between sensible and latent heat. These data, together with coarser resolution (5 km) satellite data, are used in a remote sensing-based energy balance modeling system that disaggregates flux estimates from 5 km to 30-m resolution. The resulting high-resolution flux maps provide a means for evaluating whether tower and aircraft-based flux measurements sample a full range in flux conditions for this landscape. In addition, this remote sensing-based modeling system can be used to investigate the influence of variability in these key surface states on tower and aircraft measurements through flux-footprint modeling. Under the light wind and unstable conditions that existed during the observations, highest correlation between aircraft and modeled estimated heat and water vapor fluxes were obtained using different flux-footprint estimates. More specifically, the source area for heat was estimated to be much closer to the aircraft flight line than for water vapor.  相似文献   

14.
Remote sensing in hydrology   总被引:4,自引:0,他引:4  
Remote sensing provides a means of observing hydrological state variables over large areas. The ones which we will consider in this paper are land surface temperature from thermal infrared data, surface soil moisture from passive microwave data, snow cover using both visible and microwave data, water quality using visible and near-infrared data and estimating landscape surface roughness using lidar. Methods for estimating the hydrometeorlogical fluxes, evapotranspiration and snowmelt runoff, using these state variables are also described.  相似文献   

15.
1 Introduction Thermal inertia is a bulk property that shows the re- sistance of a material to an input or output of heat. This plays a very important role in certain geological and hydrological studies, and climate modeling. In the 1970s, a simple thermal inertia model was proposed by Watson et al.[1―3]. Pratt (1979)[4] improved the thermal inertia model based on application tests where more factors were considered such as solar ra- diance, thermal conductivity effect, average humidity of g…  相似文献   

16.
The active layer of frozen ground data assimilation system adopts the SHAW (Simulteneous Heat and Water) model as the model operator. It employs an ensemble kalman filter to fuse state variables predicted by the SHAW model with in situ observation and the SSM/I 19 GHz brightness temperature for the purpose of optimizing model hydrothermal state variables. When there is little water movement in the frozen soil during the winter season, the unfrozen water content depends primarily on soil temperature. Thus, soil temperature is the crucial state variable to be improved. In contrast, soil moisture is heavily influenced by precipitation during the summer season. The simulation accuracy of soil moisture has a strong and direct impact on the soil temperature. In this case, the crucial state variable to be improved is soil moisture. One-dimensional assimilation experiments that have been carried out at AMDO station show that land data assimilation method can improve the estimation of hydrothermal state variables in the soil by fusing model information and observation information. The reasonable model error covariance matrix plays a key role in transferring the optimized surface state information to the deep soil, and it provides improved estimations of whole soil state profiles. After assimilating the 4-cm soil temperature by in situ observation, the soil temperature RMSE (Root Mean Square Error) of each soil layer decreased by 0.96°C on average relative to the SHAW simulation. After assimilating the 4-cm soil moisture in situ observation, the soil moisture RMSE of each soil layer decreased by 0.020 m3·m−3. When assimilating the SSM/I 19 GHz brightness temperature, the soil temperature RMSE of each soil layer during the winter decreased by 0.76°C, while the soil moisture RMSE of each soil layer during the summer decreased by 0.018 m3·m−3.  相似文献   

17.
This paper analyses data from two field experiments in Chickasha, Oklahoma, and Tifton, Georgia, carried out in July 1999 and June 2000 respectively. The observations on soil moisture at two depths, viz. 0–2·5 and 0–5·0 cm, surface temperature, and temperatures at 1, 5 and 10 cm depths are analysed. The relationship between the soil moisture and the temperature variability in time is examined as a function of vegetation type and location. Results from these experiments show that, during drydown, surface temperature shows an increase that corresponds to a decrease in the soil moisture. Linear models for prediction of soil moisture (at both depths) using surface temperature observations are examined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Multi-temporal synthetic aperture radar (SAR) imagery from the European Remote Sensing Satellite (ERS-1) was evaluated for monitoring soil moisture at the Romney Marsh test site as part of the UK SAR Calibration and Crop Backscatter Experiment. A total of 18 C-band (5.3 GHz) ERS-1 SAR images were acquired during the three day orbit and co-registered. Accurate calibration of the backscatter measurements was achieved using calibration constants derived from an analysis of corner reflector target responses. Mean backscatter measurements were recorded for each field and compared with field data on soil moisture, surface roughness and rainfall patterns. A comparison of daily and hourly rainfall and soil moisture measurements with backscatter for different cover types showed that the observed trends in backscatter are dominated by moisture effects. A high positive correlation between volumetric soil moisture in the range 10–40% was observed for bare soil fields. A much weaker positive relationship between soil moisture and backscatter was observed for grassland fields.  相似文献   

19.
A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.  相似文献   

20.
The research for the land surface fluxes has madea quiet great progress for its breakthroughs in the fieldof regional or global interactions between land surfaceand atmosphere. However, many remote sensing mod-els for estimating the land surface fluxes need the pa-rameters of surface momentum, heat, resistance ofwater vapor at a referenced height, which are the func-tion of aerodynamic surface roughness zad. It hasbeen validated that the retrieval of the land surfacefluxes is very sensitive to…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号