首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Southern African savannas are mixed plant communities where C3 trees co-exist with C4 grasses. Here foliar δ15N and δ13C were used as indicators of nitrogen uptake and of water use efficiency to investigate the effect of the rainfall regime on the use of nitrogen and water by herbaceous and woody plants in both dry and wet seasons. Foliar δ15N increased as aridity rose for both C3 and C4 plants for both seasons, although the magnitude of the increase was different for C3 and C4 plants and for two seasons. Soil δ15N also significantly increased with aridity. Foliar δ13C increased with aridity for C3 plants in the wet season but not in the dry season, whereas in C4 plants the relationship was more complex and non-linear. The consistently higher foliar δ15N for C3 plants suggests that C4 plants may be a superior competitor for nitrogen. The different foliar δ13C relationships with rainfall may indicate that the C3 plants have an advantage when competing for water resources. The differences in water and nitrogen use likely collectively contribute to the tree-grass coexistence in savannas. Such differences facilitate interpretations of palaeo-vegetation composition variations and help predictions of vegetation composition changes under future climatic scenarios.  相似文献   

2.
13C/12C and 18O/16O ratios of aragonite shells of modern land snails from the southern Great Plains of North America were measured for samples from twelve localities in a narrow east-west corridor that extended from the Flint Hills in North Central Oklahoma to the foothills of the Sangre de Cristo Mountains in Northern New Mexico, USA. Across the study area, shell δ18O values (PDB scale) ranged from −4.1‰ to 1.2‰, while δ13C values ranged from −13.2‰ to 0.0‰. δ18O values of the shell aragonite were predicted with a published, steady state, evaporative flux balance model. The predicted values differed (with one exception) by less than 1‰ from locality averages of measured δ18O values. This similarity suggests that relative humidity at the time of snail activity is an important control on the δ18O values of the aragonite and emphasizes the seasonal nature of the climatic information preserved in the shells. Correlated δ13C values of coexisting Vallonia and Gastrocopta suggest similar feeding habits and imply that these genera can provide information on variations in southern Great Plains plant ecology. Although there is considerable scatter, multispecies, transect average δ13C values of the modern aragonite shells are related to variations in the type of photosynthesis (i.e., C3, C4) in the local plant communities. The results of this study emphasize the desirability of obtaining isotope ratios representing averages of many shells in a locale to reduce possible biases associated with local variations among individuals, species, etc., and thus better represent the “neighborhood” scale temporal and/or spatial environmental variations of interest in studies of modern and ancient systems.  相似文献   

3.
Well-preserved aragonitic land snail shells (Vallonia) from late Pleistocene Eolian sediment in the Folsom archaeological site in New Mexico exhibit an overall decrease of δ18OPDB from maximum values of +2.7‰ (more positive than modern) to younger samples with lower average values of about −3.6‰ (within the modern range). The age of the samples (approximately 10,500 14C yr B.P.) suggests that the decrease in δ18O may manifest climatic changes associated with the Younger Dryas. Some combination of increased relative humidity and cooler temperatures with decreased δ18O of precipitation during the times of snail activity can explain the decrease in shell δ18O. A well-known Paleoindian bison kill occurred at the Folsom site during this inferred environmental transition.Average δ13C values of the aragonite shells of the fossil Vallonia range from −7.3 to −6.0‰ among different archaeological levels and are not as negative as modern values. This suggests that the proportion of C4 vegetation at the Folsom site approximately 10,500 14C yr B.P. was greater than at present; a result which is consistent with other evidence for higher proportions of C4 plants in the region at that time.  相似文献   

4.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

5.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   

6.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   

7.
We analyzed the isotopic patterns found in the tooth enamel of modern feral horses from Shackleford Banks, North Carolina (USA), which has a temperate climate and supports primarily C4 grasslands. Enamel δ13C values averaged −4.1‰ with a standard deviation (1σ) of 1.7‰, which corresponds to an average diet of 66 ± 12% C4 plants. Our results differ from dietary reconstructions from 1978 to 1981, which found that horses consumed 91% C4 plants. This suggests that horses have increased their consumption of C3 forbs, likely as a result of the removal of cattle, sheep, and goats from the island. Shackleford surface waters had δ18O values that averaged −3.3 ± 0.5‰ and −1.3 ± 1.8‰ on the western and eastern ends of the island, respectively. Tooth enamel samples averaged 27.3 ± 1.5‰ and displayed the same range of δ18O values as surface waters. The variability of both δ18O and the δ13C values among individuals within this population demonstrates that horses from relatively homogenous temperate environments can display a wide range of isotopic values. Given the observed range of isotopic values for modern horses, we suggest that researchers use the mean values of multiple (≥9) equids when attempting to reconstruct average paleodiets and/or paleoenvironmental conditions.  相似文献   

8.
The carbon stable isotopic value of dissolved inorganic carbon (δ13CDIC) was measured over several years at different depths in the water column in six carbonate-precipitating temperate lakes. δ13CDIC behavior in three of these lakes departed from the conventional model wherein epilimnetic waters are seasonally enriched relative to all hypolimnetic waters, and in general δ13CDIC values in the water column were not readily correlated to parameters such as lake stratification, algal productivity, hydraulic residence time, or water chemistry. Additionally, the processes implicated in generating the δ13CDIC values of individual lakes differ between lakes with similar δ13CDIC compositions. Each lake thus initially appears idiosyncratic, but when the effects of carbonate mineral equilibria, microbial activity, and lake residence time are viewed in terms of the magnitude of distinct DIC pools and fluxes in stratified lakes, generalizations can be made that allow lakes to be grouped by δ13CDIC behavior. We recognize three modes in the relationship between δ13CDIC values and DIC concentration ([DIC]) of individual lakes: (A) δ13CDIC values decreasing with increasing [DIC]; (B) δ13CDIC values increasing with increasing [DIC]; (C) δ13CDIC values decreasing with increasing [DIC] but increasing again at the highest [DIC]. This approach is useful both in understanding δ13CDIC dynamics in modern hardwater lakes and in reconstructing the environmental changes recorded by sedimentary δ13C components in the lacustrine paleorecord.  相似文献   

9.
植物化石和土壤中的有机质碳同位素指标常用来反映古气候的变化,然而碳同位素这个指标在特定地区反映气候的定量关系缺乏检验。研究剖面选择自中国的秦岭(34°14'24″N,106°55'30″E)到蒙古人民共和国北部,接近贝加尔湖地区(51°35'08″N, 100°45'49″E)的研究剖面线,选择了3种C3植物(Artemisia scoparia, Ajania achilleides 和 Artemisia frigida),在剖面线上沿南北方向上每隔4'到5'采取一个样点,共选取161个C3植物茎叶样品进行了δ13 C值测定。同时收集了剖面线附近气象站的降水、气温等资料,用插值方法得到每个采样点的气温、降水数据。分析表明:C3植物的δ13 C值分布范围为-30 ‰ ~-22 ‰ ,其平均值为-26.81 ‰ ,该平均值较全球C3植物δ13 C平均值偏正。通过对比C3植物δ13 C与年均温、年均降水量、生长季节的干燥度等随纬度的变化规律,发现C3植物δ13 C、年均降水量、生长季节的干燥度有非常一致的变化趋势,而C3植物δ13 C和年均温不具有一致性。通过一元回归分析也同样发现C3植物δ13 C与年均降水量呈线性负相关关系(y=-0.0077x-24.838,n=161,R2=0.4418,p=0.01),与生长季节的干燥度呈线性正相关关系(y=0.7328x-28.806,n=161,R2=0.3685,p=0.01),而与年均温度没有明显的相关关系(y=-0.0461x-26.756,n=161,R2=0.0232,p=0.01)。在本研究区C3植物δ13 C对年均降水量和生长季节的干燥度响应十分显著,而对温度的响应不明显。研究区具有明显的降水和温度的梯度分布特征,是验证植物碳同位素与气候关系的理想场所,而土壤中的有机质碳同位素与其地面上的植物碳同位素息息相关。研究也说明,在本研究区或其他气候植物组合相似的地区可以利用古土壤中的有机质碳同位素来定量或半定量地反映古气候的变化。  相似文献   

10.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

11.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

12.
In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The δ18O (SMOW) values of cave waters range from −6.3 to −3.5%.. The highest δ18O values occur at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5%. heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. δ13C (PDB) values of dissolved inorganic carbon (DIC) vary from −15.6 to −5.4%., with fast-drip waters having lower δ13C values (mostly −15.6 to −12%.) and higher DIC concentrations relative to pool and stalactite-drip water. The low δ13C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO2 derived from overlying C3-type vegetation and marine dolomite host rock.The δ18O (PDB) values of various types of present-day low-magnesium calcite (LMC) speleothems range from −6.5 to −4.3%. and δ13C values from −13 to −5.5%. and are not correlated with speleothem type. An analysis of δ18O values of present-day calcite rafts and pool waters shows that they form in oxygen isotope equilibrium. Similarly, the measured ranges of δ13C and δ18O values for all types of present-day speleothems are consistent with equilibrium deposition at cave temperatures. The δ13C–δ18O range of contemporary LMC thus reflects the variations in temperatures and isotopic compositions of the presentday cave waters. The 10%. variation in the δ13C values in waters can be modeled by a simple Rayleigh calculation of the carbon isotope fractionation accompanying CO2-degassing and carbonate precipitation. These variations may obscure the differences in the carbon isotopic composition of speleothems that could arise when vegetation cover changes from C3 to C4-type plants. This consideration emphasizes that it is necessary to characterize the full range of δ13C values associated with contemporaneous speleothems in order to clarify the effects of degassing from those due to differing vegetation types.Isotopic studies of a number of different types of fossil LMC speleothems show many of them to exhibit isotopic trends that are similar to those of present-day LMC, but others show both higher and lower δ18O ranges. In particular, the higher δ18O range has been shown by independent age-measurements to be associated with a period of drier conditions. The results of the study thus indicate that it is necessary to work on a well calibrated cave system in semiarid climates and that the fossil speleothem record should be obtained from different types of contemporaneous deposit in order to fully characterize the δ18O–δ13C range representative of any given climatic period.  相似文献   

13.
Land snails provide a unique opportunity to study terrestrial paleoenvironments because their shells, which are generally highly abundant and well-preserved in the fossil record, contain a temporal record of environmental change in the form of isotope codes. To evaluate the utility of this approach for a low-latitude oceanic setting, 207 modern shells of 18 species of land snail were analyzed for their oxygen and carbon isotope composition along a north and south facing altitudinal gradient (10-2160 m a.s.l.) in Tenerife Island (∼28°N) of the Canary Archipelago.Shells collected at each locality showed a relatively large range in isotope composition which was greater along the south facing transect (drier and hotter), suggesting that the variance in shell isotope values may be related to water-stress. Although pooled isotope values did not generally show strong relationships with environmental variables (i.e., altitude, temperature and precipitation), mean isotope values were strongly associated with some climatic factors when grouped by site. The mean δ18O value of the shell (δ18Oshell) by site displayed a negative correlation with elevation, which is consistent with the positive relationship observed between temperature and the δ18O value of rain (δ18Orain). Calculated δ18O values of the snail body water (δ18Obody) derived from observed temperatures and δ18Oshell values (using the equation of Grossman and Ku [Grossman E. L. and Ku T. L. (1986) Oxygen and carbon isotope fractionation in biogenic aragonite. Chem. Geol. (Isotope Geosci. Sec.)59, 59-74]) displayed a trend with respect to altitude that was similar to measured and hypothetical δ18O values for local rain water. The calculated δ18Obody values from the shell declined 0.17‰ (VSMOW) per 100 m, which is consistent with the “altitude effect” observed for tropical rains in Western Africa, and it correlated negatively with rainfall amount. Accordingly, lower δ18Oshell values indicate lower temperatures, lower δ18Orain values and possibly, higher rainfall totals. A positive correlation between the mean δ13C values of shells (δ13Cshell) and plants by site suggests that shells potentially record information about the surrounding vegetation. The δ13Cshell values varied between −15.7 and −0.6‰ (VPDB), indicating that snails consumed C3 and C4/CAM plants, where more negative δ13Cshell values probably reflects the preferential consumption of C3 plants which are favored under wetter conditions. Individuals with more positive δ13Cshell values consumed a larger percentage of C4 plants (other potential factors such as carbonate ingestion or atmospheric CO2 contribution were unlikely) that were more common at lower elevations of the hotter and drier south facing transect. The relatively wide range of shell isotope values within a single site requires the analysis of numerous shells for meaningful paleoclimatic studies. Although small differences were observed in isotope composition among snail species collected at a single sampling site, they were not significant, suggesting that isotope signatures extracted from multi-taxa snail data sets may be used to infer environmental conditions over a broad range of habitats.  相似文献   

14.
We measured hydrogen isotope compositions (δD) of high-molecular-weight n-alkanes (C27-C33) from grasses grown in greenhouses and collected from the US Great Plains. In both cases, n-alkanes from C4 grasses are enriched in D by more than 20‰ relative to those from C3 grasses. The apparent enrichment factor (εC29-GW) between C29n-alkane and greenhouse water is −165 ± 12‰ for C3 grasses and −140 ± 15‰ for C4 grasses. For samples from the Great Plains, δD values of C29n-alkanes range from −280 to −136‰, with values for C4 grasses ca. 21‰ more positive than those for C3 grasses from the same site. Differences in C3 and C4 grass n-alkane δD values are consistent with the shorter interveinal distance in C4 grass leaves, and greater back-diffusion of enriched water from stomata to veins, than in C3 grass leaves. Great Plains’ grass n-alkane isotopic ratios largely reflect precipitation δD values. However, the offset or apparent fractionation between n-alkanes and precipitation is not uniform and varies with annual precipitation and relative humidity, suggesting climatic controls on lipid δD values. The dryer sites exhibit smaller absolute apparent fractionation indicative of D-enrichment of source waters through transpiration and/or soil evaporation. To explore the relationship between climate and n-alkane δD values, we develop three models. (1) The ‘direct analog’ model estimates δDC29 values simply by applying the apparent enrichment factors, εC29-GW, observed in greenhouse grasses to precipitation δD values from the Great Plains. (2) The ‘leaf-water’ model uses a Craig-Gordon model to estimate transpirational D-enrichment for both greenhouse and field sites. The transpiration-corrected enrichment factors between C29 and bulk leaf-water, εC29-GW, calculated from the greenhouse samples (−181‰ for C3 and −157‰ for C4) are applied to estimate δDC29 values relative to modeled bulk leaf-water δD values. (3) The ‘soil- and leaf-water’ model estimates the combined effects of soil evaporation, modeled by analogy with a flow-through lake, and transpiration on δDC29 values. Predictions improve with the addition of the explicit consideration of transpiration and soil evaporation, indicating that they are both important processes in determining plant lipid δD values. D-enrichment caused by these evaporative processes is controlled by relative humidity, suggesting that important climatic information is recorded in leaf wax n-alkane δD values. Calibration studies such as this one provide a baseline for future studies of plant-water-deuterium systematics and form the foundation for interpretation of plant wax hydrogen isotope ratios as a paleo-aridity proxy.  相似文献   

15.
The distributions of a series of structurally related C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary have been determined. The suite of alkenes detected differs both quantitatively and qualitatively from those previously reported in other estuanne and coastal regions. Four C25 mono- and dienes and one C30 diene comprise 73–91% of the total alkenes in all surface (upper 2.5–5 cm) sediments analyzed. However, significant geographic variations exist in the relative abundance of these five compounds throughout the estuary. A comparison of alkene concentrations with δ13C of the bulk sedimentary organic matter has shown that the geographic variations of some alkenes reflect the distribution of marine organic matter, suggesting a marine source for these compounds. The distributions of other alkenes are not similarly correlated. In particular, concentrations of the C30 diene are relatively constant and exhibit no dependence on the origin of organic matter in these sediments. This distribution implies an in situ production of this alkene throughout the estuary. Analysis of several sediment cores reveals that alkene concentrations are generally highest at the surface and decrease to low, constant values within the upper 25 cm. An exception is the subsurface concentration of one C25 diene, which exhibits an increase at the same depth in two separate upper bay cores.  相似文献   

16.
Few global syntheses of oxygen and carbon isotope composition of pedogenic carbonates have been attempted,unlike marine carbonates.Pedogenic carbonates represent in-situ indicators of the climate conditions prevailing on land.The δ~(18)O and δ~(13)C values of pedogenic carbonates are controlled by local and global factors,many of them not affecting the marine carbonates largely used to probe global climate changes.We compile pedogenic oxygen and carbon isotopic data(N= 12,167) from Cretaceous to Quaternary-aged paleosols to identify potential trends through time and tie them to possible controlling factors.While discrete events such as the PaleoceneEocene Thermal Maximum are clearly evidenced,our analysis reveals an increasing complexity in the distribution of the δ~(18)O vs δ~(13)C values through the Cenozoic.As could be expected,the rise of C_4 plants induces a shift towards higher δ~(13)C values during the Neogene and Quaternary.We also show that the increase in global hypsometry during the Neogene plays a major role in controlling the δ~(18)O and δ~(13)C values of pedogenic carbonates by increasing aridity downwind of orographic barriers.Finally,during the Quaternary,an increase of 3‰ inδ~(18)O values is recorded both by the pedogenic carbonates and the marine foraminifera suggesting that both indicators may be used to track global climate signal.  相似文献   

17.
During fossilization, bone is thought to recrystallize and alter chemically on timescales of kyr to a few tens of kyr, i.e., similar to the timescale for formation of soils. Therefore, C- and O-isotope compositions of bone apatite should correlate with trends in soil water composition and aridity, and serve as paleoclimate indicators. This hypothesis was tested by analyzing C- and O-isotope compositions of the CO3 component of fossil bone apatite from mid-Oligocene through late Pleistocene units in Oregon and western Idaho, including the John Day (19.4-30.0 Ma), Mascall (15.2-15.8 Ma), and Rattlesnake (7.2-7.8 Ma) Formations, whose paleosol sequences have been studied in detail, and the Juntura (10-11 Ma), Hagerman (3.2 Ma), and Fossil Lake (<23-650 ka) fossil localities. Tooth enamel δ18O values provide a baseline of meteoric water compositions. Stable isotope compositions of bone CO3 do change in response to broad climatic trends, but show poor correlation with compositions of corresponding paleosol CO3 at specific horizons. Instead, compositional deviations between bone and paleosol CO3 correlate with compositional deviations with the next higher paleosol; this suggests that the timescale for fossilization exceeds one paleosol cycle. Based on stratigraphic evidence and simple alteration models, fossilization timescales are estimated at 20-50 kyr, indicating that bone CO3 will prove most useful for sequences spanning >100 kyr. C-isotopes show negative and strong positive deviations during wet and dry climates respectively, and short-term trends correspond well with changes in aridity within the Mascall and Rattlesnake Formations, as inferred from paleosols. A proposed correction to δ18O values based on δ13C anomalies implies a small, ∼1.5‰ increase in meteoric water δ18O during the late Oligocene global warming event, consistent with a minimum temperature increase of ∼4 °C. A strong inferred decrease in δ18O of 4-5‰ after 7 Ma closely parallels compositional changes in tooth enamel, and reflects a doubling in the height of the Cascade Range.  相似文献   

18.
Two piston cores, one located far from the continents (The North Pacific Ocean: ES core), and another located comparatively closer to the continents (The Bering Sea: BOW-8a core) were investigated to reconstruct environmental changes on source land areas. The results show significant contribution of terrestrial organic matter to sediments in both cores. The δ13C values of n-C27, n-C29, and n-C31 alkanes in sediments from the North Pacific ES core show significant glacial to interglacial variation whereas those from the Bering Sea core do not. Variations of δ13C values of land plant n-alkanes are related to the environmental or vegetational changes in the source land areas. Environmental changes, especially, aridity, rainfall, and pCO2 during glacial/interglacial transitional periods can affect vegetation, and therefore C3 / C4 plant ratios, resulting in δ13C changes in the preserved land plant biomarkers. Maximum values of δ13C as well as maximum average chain length values of long chain n-alkanes in the ES core occur mostly at the interglacial to glacial transition zones reflecting a time lag related to incorporation of living organic matter into soil and transportation into ocean basins via wind and/or ability of C4 plants to adapt for a longer period before being replaced by C3 plants when subjected to gradual climatic changes. Irregular variations with no clear glacial to interglacial trends in the BOW-8a core may result from complex mixture of aerosols from westerly winds and riverine organic matter from the Bering Sea catchments. In addition, terrestrial organic matter entering the Bering Sea could originate from multiple pathways including eolian, riverine, and ice rafted debris, and possibly be disturbed by turbidity and other local currents which can induce re-suspension and re-sedimentation causing an obliterated time relation in the Bering Sea biomarker records.  相似文献   

19.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

20.
Recent studies show that oxygen three isotope measurement (16O, 17O, and 18O) of water provides additional information for investigating the hydrological cycle and paleoclimate. For determining the 18O/16O value of water, a conventional CO2-water equilibration method involves measurement of the ratios of CO2 isotopologues which were equilibrated with water. However, this long-established technique was not intended to measure the 17O/16O ratio, primarily because the historic ion correction scheme does not allow for possible deviations from a fixed (and mass-dependent) relationship between 17O/16O and 18O/16O isotope ratios. Here, we propose an improved method for obtaining the 17O/16O isotope ratio of fresh water by the equilibration method and measurement of the 45/44 CO2 ion abundance ratio. Equations which we formulated for 17O/16O measurement have two features: first, instead of absolute isotope ratio (R), all equations are formulated in δ values, measured by isotope ratio mass spectrometry. Second, we include two “assigned” δ values of water standards in the equations, because the δ18O are commonly measured against two working standards to normalize the span of the δ scale. This approach clarifies that the contribution from 17O (12C16O17O+) to the molecular ion current at mass-to-charge ratio m/z 45 signal depends not on the absolute 13C/12C ratio, but on the relative δ13C differences between the working standards and the sample. The pH value of water affects δ17O estimation because δ13C of CO2 was changed in the water-CO2 system. We reevaluated this effect using a set of equations, which explicitly includes CO2 partial pressure effect on pH value. Our new estimation of pH effect is significantly smaller than previously reported value, but it does not alter the main conclusions in the previous study. The method was verified by δ17O measurements of an international standard reference water (GISP) provided by the IAEA. We applied the method to investigate 17O-excess of the ice core drilled at the Dome Fuji station, Antarctica. A total of 1320 samples from a 130 m section around Marine Isotope Stage 9.3 (∼330,000 years before present) were measured. The error of a measurement for δ17O is 0.175‰ and that of 17O-excess is 184 per meg. Although these analytical uncertainties hampered accurate estimation of the changes in 17O-excess, the averaged data indicate that 17O-excess around MIS 9.3 was higher than during the subsequent glacial period. This approach can be applied only to fresh water samples, and additional improvements will be needed to measure samples which contains significant amount of carbonate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号