首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Collection of seismic reflection data from continental margins and ocean basins surrounding North America makes it possible to estimate the amount of material eroded from the area formerly covered by Laurentide ice sheets since major glaciation began in North America. A minimum estimate is made of 1.62 × 106 km3, or an average 120 m of rock physically eroded from the Laurentide region. This figure is an order of magnitude higher than earlier estimates based on the volume of glacial drift, Cenozoic marine sediments, and modern sediment loads of rivers. Most of the sediment produced during Laurentide glaciation has already been transported to the oceans. The importance of continental glaciation as a geomorphic agency in North America may have to be reevaluated. Evidence from sedimentation rates in ocean basins surrounding Greenland and Antarctica suggests that sediment production, sediment transport, and possibly denudation by permanent ice caps may be substantially lower than by periodic ice caps, such as the Laurentide. Low rates of sediment survival from the time of the Permo-Carboniferous and Precambrian glaciations suggest that predominance of marine deposition during some glacial epochs results in shorter lived sediment because of preferential tectonism and cycling of oceanic crust versus continental crust.  相似文献   

2.
Multibeam bathymetry and 3.5-kHz sub-bottom profiler data collected from the US icebreaker Healy in 2003 provide convincing evidence for grounded ice on the Chukchi Borderland off the northern Alaskan margin, Arctic Ocean. The data show parallel, glacially induced seafloor scours, or grooves, and intervening ridges that reach widths of 1000 m (rim to rim) and as much as 40 m relief. Following previous authors, we refer to these features as “megascale glacial lineations (MSGLs).” Additional support for ice grounding is apparent from stratigraphic unconformities, interpreted to have been caused by ice-induced erosion. Most likely, the observed sea-floor features represent evidence for massive ice-shelf grounding. The general ESE/WNW direction of the MSGLs, together with sediment, evidently bulldozed off the Chukchi Plateau, that is mapped on the western (Siberian) side of the plateau, suggests ice flow from the Canada Basin side of Chukchi Borderland. Two separate generations of glacially derived MSGLs are identified on the Chukchi Borderland from the Healy geophysical data. The deepest and oldest extensive MSGLs appear to be draped by sediments less than 5 m thick, whereas no sediment drape can be distinguished within the resolution of the sub-bottom profiles on the younger generation.  相似文献   

3.
A new digital map of glacial geomorphic features and interpreted glacial landsystems was produced for an area covering ~415 000 km2 in the Keewatin Sector of the Laurentide Ice Sheet (LIS) in Nunavut. The map integrates information from previous surficial geology maps and >14 000 field stations, and is significantly improved by the detailed inventory of ~152 000 glacigenic features using high-resolution ArcticDEM data and Landsat 8 imagery. From this, we identify and map coherent patterns of landform development (landsystems) between the Manitoba border and the Arctic coast, many of which are entirely new and others that are significantly modified or updated. In particular, we recognize six separate ice streams, including one probable remnant ice stream, and we delineate numerous palimpsest streamlined landscapes with associated ice-flow trends and relative ages. A continuum of relict terrains with varying basal ice thermal conditions is mapped for the first time in the ice divide migration zone between Baker Lake and Wager Bay. In addition, deglacial cold-based retreat terrains and preserved warm-based landscapes unaffected by younger glacial events have been identified. These new georeferenced, multi-scale data sets and interpreted glacial landsystems provide a comprehensive framework to strengthen reconstructions of the glacial history and dynamics of one of the largest ice domes of the LIS, identify distinct glacial sediment transport paths for applications to mineral exploration, and test numerical modelling of the LIS in support of climate change studies and long-term evolution of modern ice sheets.  相似文献   

4.
For the past half-century, reconstructions of North American ice cover during the Last Glacial Maximum have shown ice-free land distal to the Laurentide Ice Sheet, primarily on Melville and Banks islands in the western Canadian Arctic Archipelago. Both islands reputedly preserve at the surface multiple Laurentide till sheets, together with associated marine and lacustrine deposits, recording as many as three pre-Late Wisconsinan glaciations. The northwest corner of Banks Island was purportedly never glaciated and is trimmed by the oldest and most extensive glaciation (Banks Glaciation) considered to be of Matuyama age (>780 ka BP). Inside the limit of Banks Glaciation, younger till sheets are ascribed to the Thomsen Glaciation (pre-Sangamonian) and the Amundsen Glaciation (Early Wisconsinan Stade). The view that the western Canadian Arctic Archipelago remained largely ice-free during the Late Wisconsinan is reinforced by a recent report of two woolly mammoth fragments collected on Banks and Melville islands, both dated to ~22 ka BP. These dates imply that these islands constitute the northeast extremity of Beringia.A fundamental revision of this model is now warranted based on widespread fieldwork across the adjacent coastlines of Banks and Melville islands, including new dating of glacial and marine landforms and sediments. On Dundas Peninsula, southern Melville Island, AMS 14C dates on ice-transported marine molluscs within the most extensive Laurentide till yield ages of 25–49 ka BP. These dates require that Late Wisconsinan ice advanced northwestward from Visount Melville Sound, excavating fauna spanning Marine Isotope Stage 3. Laurentide ice that crossed Dundas Peninsula (300 m asl) coalesced with Melville Island ice occupying Liddon Gulf. Coalescent Laurentide and Melville ice continued to advance westward through M'Clure Strait depositing granite erratics at ≥235 m asl that require grounded ice in M'Clure Strait, as do streamlined bedforms on the channel floor. Deglaciation is recorded by widespread meltwater channels that show both the initial separation of Laurentide and Melvile ice, and the successive retreat of Laurentide ice southward across Dundas Peninsula into Viscount Melville Sound. Sedimentation from these channels deposited deltas marking deglacial marine limit. Forty dates on shells collected from associated glaciomarine rhythmites record near-synchronous ice retreat from M'Clure Strait and Dundas Peninsula to north-central Victoria Island ~11.5 ka BP. Along the adjacent coast of Banks Island, deglacial shorelines also record the retreat of Laurentide ice both eastward through M'Clure Strait and southward into the island's interior. The elevation and age (~11.5 ka BP) of deglacial marine limit there is fully compatible with the record of ice retreat on Melville Island. The last retreat of ice from Mercy Bay (northern Banks Island), previously assigned to northward retreat into M'Clure Strait during the Early Wisconsinan, is contradicted by geomorphic evidence for southward retreat into the island's interior during the Late Wisconsinan. This revision of the pattern and age of ice retreat across northern Banks Island results in a significant simplification of the previous Quaternary model. Our observations support the amalgamation of multiple till sheets – previously assigned to at least three pre-Late Wisconsinan glaciations – into the Late Wisconsinan. This revision also removes their formally named marine transgressions and proglacial lakes for which evidence is lacking. Erratics were also widely observed armouring meltwater channels originating on the previously proposed never-glaciated landscape. An extensive Late Wisconsinan Laurentide Ice Sheet across the western Canadian Arctic is compatible with similar evidence for extensive Laurentide ice entering the Richardson Mountains (Yukon) farther south and with the Innuitian Ice Sheet to the north. Widespread Late Wisconsinan ice, in a region previously thought to be too arid to sustain it, has important implications for paleoclimate, ice sheet modelling, Arctic Ocean ice and sediment delivery, and clarifying the northeast limit of Beringia.  相似文献   

5.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

6.
Deglaciation of the James Bay region was highly dynamic, with the occurrence of ice (Cochrane) readvances into glacial Lake Ojibway around final deglaciation time, which culminated with the drainage of Ojibway waters into Hudson Bay and subsequent incursion of the Tyrrell Sea at ~8 ka. Renewed interest on these events comes from the possible link between the drainage of the ice-dammed Lake Agassiz-Ojibway and a major climate deterioration known as the 8.2-ka cooling event. Recent glaciological modeling suggests that this drainage may have occurred subglacially, a mechanism that can accommodate more than one lake discharge, as suggested by marine records. The exact number and timing of drainage events, as well as location of the lake discharge pathway(s) remain, however, largely unconstrained. Here we focus on the events that led to the drainage of Lake Ojibway by documenting late-glacial sedimentary sequences located east of James Bay. Our investigations indicate that the deglacial sequence consists of a readvance till, extensive Ojibway rhythmites, and thick marine sediments. The glaciolacustrine and marine units are separated by a 60 cm-thick horizon composed of laminated silt beds containing rounded clay balls and disseminated clasts resulting from the abrupt drainage of the lake. Radiocarbon dating of marine fossils lying above the drainage horizon indicates that the glaciolacustrine episode ended around 8128–8282 cal yr BP. Micropaleontological analyses reveal that freshwater ostracods (Candona sp.) and marine microfossils (foraminifers, dinocysts) occur together in the upper part of the Ojibway sediments. Analysis of oxygen isotopes (δ18O) of ostracods and foraminifers originating from the same stratigraphic position show highly contrasting values that suggest possible subglacial exchanges between Lake Ojibway and Tyrrell Sea waters prior to the final drainage event. The complexity of the deglacial events is further indicated by radiocarbon dating of marine shells retrieved from a Cochrane till that suggests that the last ice readvance occurred almost simultaneously with the final lake discharge. These results bring additional constraints on the drainage mechanism of the coalesced Lake Agassiz-Ojibway and indicate that the James Bay region formed an important drainage pathway for meltwaters at the end of the last deglaciation.  相似文献   

7.
Differentiating between forced regressive deposits from deglacial periods in high latitude domains and forced regressive deposits from the onset of glacial periods in low latitude domains is fundamental for the accurate interpretation of glacial cycles within the geological record and then for the reconstruction of palaeogeography and palaeo‐climate. A forced regressive deglacial sequence is documented from the Lake Saint‐Jean basin (Québec, Canada). In this area, the Late Pleistocene to Holocene sediments have recorded the Laurentide ice sheet retreat accompanied by the invasion of marine waters (Laflamme Gulf) from ca 12·9 cal kyr bp . Subsequently, fluvio‐deltaic and coastal prograding wedges were deposited; they followed the base‐level fall due to glacio‐isostatic rebound. This succession, representing a transition from glacial to post‐glacial periods within a previously glaciated area, was investigated through recent mapping, preserved landforms, facies analysis, and new optical stimulated luminescence and radiocarbon dates. Three basin‐scale geological sections share a common lower part made of isolated ice‐contact fan deposits overlying bedrock. Throughout the entire basin, ice‐contact fans are capped by glacimarine muds. Above, fluvial and coastal prograding systems were deposited and evolved through four steps: (i) deltaic systems progressively increased in width; (ii) coastal influence on sedimentation increased; (iii) hydrographic drainage systems became more organised; and (iv) deltas graded from steep (Gilbert delta) to low‐angle foresets (mouth‐bar delta). Deposited during the base‐level fall from glacio‐isostatic rebound, the complete succession has been designated as a single falling stage system tract referred to as a deglacial falling stage system tract. It is representative of a deglaciation sequence in areas previously covered by ice during glacial periods (i.e. medium to high latitude domains). Diagnostic criteria are provided to identify such a deglacial falling stage system tract in the geological record, which may aid identification of previously unknown glacial cycles.  相似文献   

8.
Widespread molluscan samples were collected from raised marine sediments to date the last retreat of the NW Laurentide Ice Sheet from the western Canadian Arctic Archipelago. At the head of Mercy Bay, northern Banks Island, deglacial mud at the modern coast contains Hiatella arctica and Portlandia arctica bivalves, as well as Cyrtodaria kurriana, previously unreported for this area. Multiple H. arctica and C. kurriana valves from this site yield a mean age of 11.5 14C ka BP (with 740 yr marine reservoir correction). The occurrence of C. kurriana, a low Arctic taxon, raises questions concerning its origin, because evidence is currently lacking for a molluscan refugium in the Arctic Ocean during the last glacial maximum. Elsewhere, the oldest late glacial age available on C. kurriana comes from the Laptev Sea where it is < 10.3 14C ka BP and attributed to a North Atlantic source. This is 2000 cal yr younger than the Mercy Bay samples reported here, making the Laptev Sea, ~ 3000 km to the west, an unlikely source. An alternate route from the North Atlantic into the Canadian Arctic Archipelago was precluded by coalescent Laurentide, Innuitian and Greenland ice east of Banks Island until ~ 10 14C ka BP. We conclude that the presence of C. kurriana on northern Banks Island records migration from the North Pacific. This requires the resubmergence of Bering Strait by 11.5 14C ka BP, extending previous age determinations on the reconnection of the Pacific and Arctic oceans by up to 1000 yr. This renewed ingress of Pacific water likely played an important role in re-establishing Arctic Ocean surface currents, including the evacuation of thick multi-year sea ice into the North Atlantic prior to the Younger Dryas geochron.  相似文献   

9.
Provenance studies of anomalously high-flux layers of ice-rafted detritus (IRD) in North Atlantic sediments of the last glacial cycle show evidence for massive iceberg discharges coming from the Hudson Strait region of the Laurentide Ice Sheet (LIS). Although these so-called Heinrich events (H events) are commonly thought to be associated with abrupt drawdown of the LIS interior, uncertainties remain regarding the sector(s) of this multi-domed ice sheet that conveyed ice through Hudson Strait. In Northern Québec and Labrador (NQL), large-scale patterns of glacial lineations indicate massive ice flows towards Ungava Bay and Hudson Strait that could reflect the participation of the Labrador–Québec ice dome in H events. Here we evaluate this hypothesis by constraining the source of NQL glacial deposits, which provide an estimate of the provenance characteristics of IRD originating from this sector. Specifically, we use 40Ar/39Ar ages of detrital hornblende grains in 25 till samples distributed along a latitudinal transect (lat. 58°) extending east and west of Ungava Bay. The data show that tills located west and southwest of the Ungava Bay region are largely dominated by hornblende grains with Archean ages (>2.6 Ga), while tills located east of Ungava Bay are characterized by grains with early Paleoproterozoic ages (2.0–1.8 Ga), although most samples contain a few Archean-age grains. IRD derived from the NQL region should thus be characterized by a large proportion of Archean-age detrital grains, which contrasts significantly with the predominant Paleoproterozoic 40Ar/39Ar ages (1.8–1.6 Ga) typically reported for the dominant age population of hornblende grains in H layers. Comparisons with IRD through the last glacial cycle from a western North Atlantic core off Newfoundland do not show evidence for any prominent ice-rafted event with the provenance characteristics of NQL glacial deposits, thereby suggesting that significant ice-calving event(s) from the Labrador–Québec sector may have been limited throughout that interval. Although these results tend to point towards a relative stability of this ice dome during H events, our study also indicates that further provenance work is required on IRD proximal to the Hudson Strait mouth in order to constrain with a greater confidence the sector(s) of the LIS that fed ice into Hudson Strait during H events. Alternatively, these results and other paleogeographic considerations tend to support models suggesting that part of the Ungava Bay glacial lineations could be associated with a Late-Glacial ice flow across Hudson Strait.  相似文献   

10.
The extent of glaciation in northwestern Alaska, the source of sediment supply to the Chukchi shelf and slope, and the movement of sea ice and icebergs across the shelf during the last glacial maximum (LGM) remain poorly constrained. Here we present geophysical and geological data from the outer Chukchi margin that reveal a regionally extensive, heavily ice-scoured surface ∼ 5-8 m below the modern seafloor. Radiocarbon dating of this discrete event yields age estimates between 10,600 and 11,900 14C yr BP, indicating the discharge event occurred during the Younger Dryas. Based on mineralogy of the ice-rafted debris, the icebergs appear to be sourced from the northwestern Alaskan margin, which places important constraints on the ice extent in northern Alaska during the LGM as well as existing circulation models for the region.  相似文献   

11.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

12.
Geomorphological and glacial geological surveys and multiple cosmogenic nuclide analyses (10Be, 26Al, and 21Ne) allowed us to reconstruct the chronology of variations prior to the last glacial maximum of the East Antarctic Ice Sheet (EAIS) and valley glaciers in the Terra Nova Bay region. Glacially scoured coastal piedmonts with round-topped mountains occur below the highest local erosional trimline. They represent relict landscape features eroded by extensive ice overriding the whole coastal area before at least 6 Ma (pre-dating the build-up of the Mt. Melbourne volcanic field). Since then, summit surfaces were continuously exposed and well preserved under polar condition with negligible erosion rates on the order of 17 cm/Ma. Complex older drifts rest on deglaciated areas above the younger late-Pleistocene glacial drift and below the previously overridden summits. The combination of stable and radionuclide isotopes documents complex exposure histories with substantial periods of burial combined with minimal erosion. The areas below rounded summits were repeatedly exposed and buried by ice from local and outlet glaciers. The exposure ages of the older drift(s) indicate multiple Pleistocene glacial cycles, which did not significantly modify the pre-existing landscape.  相似文献   

13.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

14.
We present new evidence for a grounded ice sheet and subsequent erosion by large fields of coherent icebergs for the central and northern Yermak Plateau (80.6°N to 82.2°N). Sediment echosounder and swath bathymetry data were combined with seismic reflection profiles and reveal at least three different glacial events marked by erosional unconformities: (i) An erosional unconformity was observed at ~70–90 m below seafloor down to depths of more than 850 m present water depth, extending to ~82°N. The erosional unconformity is overlain by an acoustically chaotic layer of ~50 m thickness interpreted as a diamicton originating from a grounded ice sheet. The erosional unconformity and the overlying diamicton can be correlated to the overconsolidated sediments found at ODP Site 910 at a sediment depth between ~19 and 70–95 m. The oldest sediments just above the overconsolidated sediments are of late Early Pleistocene age (MIS19/20) and provide a minimum age for the grounding event. (ii) Parallel to sub-parallel mega-scale lineations are observed on large parts of the plateau west and northeast of the Sverdrup Bank at water depths between 725 and 850 m. These lineations are mainly oriented NNE-SSW and were quite likely formed by the keels of deep-draft, mega-scale tabular icebergs entrapped in a coherent mass of icebergs and sea ice. The lineations are of late Middle Pleistocene age. (iii) Smaller-scale curvilinear plow marks were found in the southernmost part of our study area at water depths between 640 and 775 m. These were possibly caused by single icebergs and are of Late Pleistocene age. Iceberg scours are also found on three basement heights on the Yermak Plateau. These, however, cannot be assigned to specific events; they might as well originate from additional glacial phases.The western (at >850 m water depth) and eastern (at >1000–1200 m water depth) flanks of the Yermak Plateau are relatively featureless, and indicate the maximum depth of a grounded ice sheet and of iceberg armadas probably entrapped in sea ice.  相似文献   

15.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

16.
Glaciers erode bedrock but are also efficient conveyors of debris supplied during a cycle of glaciation by processes other than basal erosion. In this dual capacity as both an eroding and a transporting agent lies the ambiguity of ‘glacial erosion’ as a geomorphic process, with implications for methods of measuring the removal of rock mass by glaciers in the geological past, and for interpreting what exactly the consequences have been on topography and elevation change. A global review of ~400 Quaternary glacial denudation rates estimated from five different measurement techniques provides values ranging between 10?4 and 10 mm yr?1. We investigate the causes of such wide variability by examining the respective influences of environmental setting and methodological bias. A reference frame chosen for assessing these issues is the Massif du Carlit (Pyrenees, France), where a quantified mass balance of the well preserved glacial, periglacial and paraglacial deposits was made possible by detailed geomorphological mapping and terrestrial cosmogenic nuclide dating of extant erosional and depositional landform sequences. Resulting age brackets helped to define three main episodes of ice-cap growth and decline, each characterized by a volume of debris and a mappable source area. Erosion rates were expressed in two ways: (i) as spatially averaged denudation rates (D) during the successive stages of glacial advance to the line of maximum ice extent (MIE), post-MIE ice recession, and Lateglacial cirque readvance, respectively; and (ii) as cirque-wall recession rates (R) where moraine facies criteria indicated a supraglacial provenance of debris. Results indicate low erosion (D  0.05 mm yr?1) during the ice advance phase, probably because of thin or passive ice covering the low-gradient subglacial topography that occurs just above the late Pleistocene equilibrium line altitude (2.2–2.4 km). Erosion rates peaked (D  0.6 mm yr?1 and R  2.4–4.5 mm yr?1) during the main transition to ice-free conditions, when deglacial debuttressing promoted the rapid response of freshly exposed slope systems to new equilibrium conditions in the steep crest zone. Lateglacial D- and R-values declined to 0.2–0.3 mm yr?1, with indications of spatially variable R controlled by lithology. In this environment glaciers overall behaved more as conveyors of debris supplied by supraglacial rock exposures in the mountain crest zone than as powerful modifiers of subglacial topography. This explains the widespread preservation of deep, in situ preglacial weathering profiles on relict Cenozoic land surfaces in the deglacierized part of the Eastern Pyrenees. When plotted on the global data set analyzed and discussed in the review, the East Pyrenean erosion rates stand out as being amongst the lowest on record.  相似文献   

17.
Various models of surface and deep-water circulation in the Norwegian-Greenland Sea (NGS) have been proposed for the last two glacial to interglacial transitions. Although much progress has been made in understanding the sedimentary response to climatic and oceanographic changes, conflicting interpretations have been developed. To clarify some of these discrepancies and to test or modify the existing circulation concepts, a multiparameter approach is applied, combining sedimentological, micropaleontological, organic-geochemical and isotopic methods. On the basis of indicative properties a combined litho- and organofacies concept is developed and calibrated with modern depositional settings beneath different surface water masses. Sedimentary regimes are then derived for glacial and deglacial settings.Atlantic water intrusions in the NGS reveal complex and highly dynamic patterns for the last two glacial and interglacial periods, with repetitive inflows during Isotope Stage 6 and a high variability in Isotope Stage 5. Specific facies patterns show maximum extensions of Atlantic Water intrusions during the climatic highstands 5.5.1, 5.3 and 5.1 and narrowest intrusions in the cool phases 5.4 and most pronounced in 5.2. In contrast, different glacio-marine depositional regimes depict variable sea ice coverage and supply of ice-rafted debris. Most conspicuous are short-term depositional events marked by diamictons, which are related to the high instabilities of continental ice sheets. Some of the diamictons seem to occur contemporaneously with Heinrich layers H1 and H2. The probable temporal and obvious phenomenological concidence of Heinrich layers and NGS diamictons suggests a common trigger mechanism which caused an almost simultaneous disintegration of huge continental ice masses along the shelves of North America and the eastern margin of the NGS.A previous estuarine circulation model claims regional upwelling along the eastern margin of the NGS for specific periods of the last deglaciation. The organic character of sediments covering the same time intervals show a clear predominance of reworked fossil organic matter and thus does not support the estuarine model.  相似文献   

18.
《Quaternary Science Reviews》2004,23(3-4):261-281
The organic carbon content of marine sediments is commonly used as a proxy for export production. However, in continental margin sediments a large fraction of the organic matter may be of terrestrial origin, and it is necessary to correct the total organic carbon data accordingly. Radiocarbon dating of bulk organic carbon, organic geochemistry and isotope data (δ13C and δ15N) are used here to characterize the type of organic matter present in Core JT96-09 collected at a water depth of 920 m on the slope off Western Canada. The quantities of marine and terrestrial organic carbon are then estimated using the δ13C data. The 16 kyr record obtained from Core JT96-09 suggests that accumulation of total organic carbon was highest during the late glacial and deglacial, but geochemical data indicate that as much as 70% of this carbon is terrestrial in origin. When the palaeo-record is corrected for this terrigenous input it is observed that accumulation of marine organic matter, and presumably marine export production, increased at the end of the last glacial contemporaneous with the Bølling, and that it peaked during the Allerød. Data from other palaeoproductivity proxies (i.e., bio-barium, opal and alkenones) also indicate relatively high productivity during the deglacial. These results indicate a return to modern upwelling conditions and high marine export production at ∼14.3 calendar kyr BP and a period of enhanced upwelling, relative to the present, during the Allerød.  相似文献   

19.
The Pingualuit Crater was formed by a meteoritic impact ca. 1.4 million years ago in northernmost Ungava (Canada). Due to its geographical position near the center of successive North American ice sheets and its favorable morphometry, the Pingualuit Crater Lake (water depth = 246 m) promises to yield a unique continuous sedimentary sequence covering several glacial/interglacial cycles in the terrestrial Canadian Arctic. In this paper, we suggest the existence of a subglacial lake at least during the Last Glacial Maximum (LGM) by hydraulic potential modeling using LGM ice-surface elevation and bed topography derived from a digital elevation model. These results support the hypothesis that the bottom sediments of the Crater Lake escaped glacial erosion and may contain a long-term continental sedimentary sequence. We also present the stratigraphy of a 9 m-long core retrieved from the deep basin of the lake as well as a multiproxy reconstruction of its deglacial and postglacial history. The base of the core is formed by very dense diamicton reflecting basal melt-out environments marking the end of subglacial conditions at the coring site. The overlying finely laminated silt are related to the onset of proglacial conditions characterized by extremely low lacustrine productivity. Infra Red Stimulated Luminescence and AMS 14C dating, as well as biostratigraphic data indicate sediment mixing between recent (e.g. Holocene) and much older (pre- to mid-Wisconsinan) material reworked by glacier activity. This process prevents the precise dating of these sediments that we interpret as being deposited just before the final deglaciation of the lake. Two finer grained and organic-rich intervals reflect the inception of lacustrine productivity resulting from the cessation of glacial meltwater inputs and ice-free periods. The lower organic interval corresponds to the early postglacial period (6850–5750 cal BP) and marks the transition between proglacial and postglacial conditions during the Holocene Thermal Maximum, while the uppermost organic-rich core section represents late Holocene sediments (~4200–600 cal BP). The organic intervals are separated by a basin-scale erosive slide occurring around 4200 cal BP and likely related to 1) a seismic event due to the glacio-isostatic rebound following the last deglaciation or 2) slope instabilities associated with rapid discharge events of the lake.  相似文献   

20.
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22–40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号