首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New data are presented for lavas from the Kamchatka Peninsula and the Aleutian arc. Radiogenic isotopes are strikingly homogeneous in the Kamchatka lavas and although incompatible trace element ratios exhibit much greater variability, much of this appears to result from shallow level, crystal fractionation. The data reveal little systematic across-arc change in radiogenic isotopes or trace element ratios. The Nd and Pb isotope data overlap those for Pacific MORB and limit the amount of sediment that could be incorporated in the mantle source region to <1% which is insufficient to account for the observed La/Ta ratios (50–68) in the high-MgO lavas. The lack of a positive correlation between La/Ta and depth to the slab suggests that melt–wall rock interaction was not important in controlling this ratio. Instead it is inferred that La/Ta increased during partial melting and that DLa/DTa = 0.11–0.06, possibly due to residual amphibole. Ba, U, Sr and Pb were added to the source by an aqueous fluid from the subducting slab and its inferred isotopic composition indicates that this fluid was derived from the altered oceanic crust. The addition of U resulted in a large range of (238U/232Th) from 0.79–2.48 similar to that observed in the Mariana and Lesser Antilles island arcs. However, (230Th/232Th) = 0.79–2.34, and the majority of samples lie close to the equiline indicating that the time since U/Th fractionation is generally ≥150 thousand years. The large width of the volcanic zone is assumed to reflect protracted fluid release from the subducting slab over the depth interval 170–380 km possibly coupled with extension across the Central Kamchatka Depression. The data from the Aleutians contrast strongly with those from Kamchatka. Radiogenic isotope data indicate that the Aleutian lavas contain a significant recycled sedimentary component, consistent with elevated 10Be/9Be ratios. The Aleutian lavas have (230Th/232Th) = 0.79–2.34 and exhibit a significant range of U/Th disequilibria [(238U/230Th) = 0.75–1.01]. However, 10Be/9Be is positively correlated with (238U/230Th) suggesting that the 10Be signal was carried by the aqueous fluid from the slab. The U/Th disequilibria for the Aleutian lavas lie close to a 30 thousand year reference line suggesting that this fluid was released from the slab ∼30 thousand years ago similar to recent estimates from the Lesser Antilles, Marianas, and Tonga-Kermadec island arcs from which it is inferred that fluid addition was the trigger for partial melting. Given that the rate of convergence in Kamchatka is similar to that in the Aleutians, Marianas and Tonga-Kermadec the inferred greater time since␣fluid release in Kamchatka requires further investigation. Received: 24 September 1997 / Accepted: 7 July 1998  相似文献   

2.
We report the first precise U–Pb isotope data on cassiterite from the large Xianghualing tin-polymetallic deposit in the central Nanling district, South China. The results show that four separates from sample XF-51 have a relatively narrow range of 206Pb/238U apparent ages, varying from 152 to 157 Ma, and the three 206Pb/238U apparent ages yield a weighted average value of 156 ± 4 Ma (MSWD = 0.32). Separates from two other cassiterite samples do not have sufficient radiogenic Pb to generate a reliable 206Pb/238U age. Seven separates from the above three cassiterite samples define a well-constrained 238U–206Pb isochron corresponding to an age of 157 ± 6 Ma (MSWD = 34). A comparison of the U–Pb cassiterite ages with published Ar–Ar dates on muscovite from this deposit and K–Ar age data on biotite from the pluton genetically related to the tin mineralization in this area demonstrates that the U–Pb isotope system of cassiterite is a potential geochronometer. Combined with the Ar–Ar dates of muscovite from this deposit, we can constrain the absolute age of tin-polymetallic mineralization in Xianghualing at 154–157 Ma. The dates obtained in this study, consistent with the published geochronological results from other important deposits in this region, reveal that the large-scale tungsten–tin mineralization in the central Nanling region was predominantly emplaced during 150–161 Ma.  相似文献   

3.
Precise measurements of 238U-230Th-226Ra disequilibria in lavas erupted within the last 100 yr on Mt. Cameroon are presented, together with major and trace elements, and Sr-Nd-Pb isotope ratios, to unravel the source and processes of basaltic magmatism at intraplate tectonic settings. All samples possess 238U-230Th-226Ra disequilibria with 230Th (18-24%) and 226Ra (9-21%) excesses, and there exists a positive correlation in a (226Ra/230Th)-(230Th/238U) diagram. The extent of 238U-230Th-226Ra disequilibria is markedly different in lavas of individual eruption ages, although the (230Th/232Th) ratio is constant irrespective of eruption age. When U-series results are combined with Pb isotope ratios, negative correlations are observed in the (230Th/238U)-(206Pb/204Pb) and (226Ra/230Th)-(206Pb/204Pb) diagrams. Shallow magma chamber processes like magma mixing, fractional crystallization and wall rock assimilation do not account for the correlations. Crustal contamination is not the cause of the observed isotopic variations because continental crust is considered to have extremely different Pb isotope compositions and U/Th ratios. Melting of a chemically heterogeneous mantle might explain the Mt. Cameroon data, but dynamic melting under conditions of high DU and DU/DTh, long magma ascent time, or disequilibrium mineral/melt partitioning, is required. The most plausible scenario to produce the geochemical characteristics of Mt. Cameroon samples is the interaction of melt derived from the asthenospheric mantle with overlying sub-continental lithospheric mantle which has elevated U/Pb (>0.75) and Pb isotope ratios (206Pb/204Pb > 20.47) due to late Mesozoic metasomatism.  相似文献   

4.
A suite of young volcanic basaltic lavas erupted on the intra-plate island of Niuafo’ou and at active rifts and spreading centres (the King’s Triple Junction and the Northeastern Lau Spreading Centre) in the northern Lau Basin is used to examine the pattern of mantle flow and the dynamics of melting beneath this complex back-arc system. All lavas contain variable amounts of a subduction related component inherited from the Tonga subduction zone to the east. All lavas have higher 87Sr/86Sr, lower 143Nd/144Nd and more radiogenic Pb isotope compositions than basalts erupted at the Central Lau Spreading Centre in the central Lau Basin, and are interpreted as variable mixtures of subduction-modified, depleted upper mantle, and mantle residues derived from melting beneath the Samoan Islands which has leaked through a tear in the subducting Pacific Plate beneath the Vitiaz Lineament at the northern edge of the Lau Basin. Our data can be used to map out the present-day distribution of Samoan mantle in this region, and show that it influences the compositions of lavas erupted as far as 400 km from the Samoan Islands. The distribution of Samoan-influenced lavas implies south- and southwest-wards mantle flow rates of >4 cm/year. U-series disequilibria in historic Niuafo’ou lavas have average (230Th/238U) = 1.13, (231Pa/235U) = 2.17, (226Ra/230Th) = 2.11, and together with major and trace element data require ∼5% partial melting of mantle at between 2 and 3 GPa, with a residual porosity of 0.002 and an upwelling rate of 1 cm year−1. We suggest that intraplate magmatism in the northern Lau Basin results from decompression melting during southward flow of mantle from beneath old (110–120 Ma), relatively thick Pacific oceanic lithosphere to beneath young (<5 Ma), thinner oceanic lithosphere beneath the northern Lau Basin.  相似文献   

5.
A temperature–time path was constructed for high-temperature low-pressure (HT–LP) migmatites of the Bayerische Wald, internal zone of the Variscan belt, Germany. The migmatites are characterised by prograde biotite dehydration melting, peak metamorphic conditions of approximately 850 °C and 0.5–0.7 GPa and retrograde melt crystallisation at 800 °C. The time-calibration of the pressure–temperature path is based on U–Pb dating of single zircon and monazite grains and titanite separates, on 40Ar/39Ar ages obtained by incremental heating experiments on hornblende separates, single grains of biotite and K-feldspar, and on 40Ar/39Ar spot fusion ages of biotite determined in situ from sample sections. Additionally, crude estimates of the duration of peak metamorphism were derived from garnet zoning patterns, suggesting that peak temperatures of 850 °C cannot have prevailed much longer than 2.5 Ma. The temperature–time paths obtained for two areas approximately 30 km apart do not differ from each other considerably. U–Pb zircon ages reflect crystallisation from melt at 850–800 °C at 323 Ma (southeastern area) and 326 Ma (northwestern area). The U–Pb ages of monazite mainly coincide with those from zircon but are complicated by variable degrees of inheritance. The preservation of inherited monazite and the presence of excess 206Pb resulting from the incorporation of excess 230Th in monazite formed during HT–LP metamorphism suggest that monazite ages in the migmatites of the Bayerische Wald reflect crystallisation from melt at 850–800 °C and persistence of older grains at these temperatures during a comparatively short thermal peak. The U–Pb ages of titanite (321 Ma) and 40Ar/39Ar ages of hornblende (322–316 Ma) and biotite (313–309 Ma) reflect cooling through the respective closure temperatures of approximately 700, 570–500 and 345–310 °C published in the literature. Most of the feldspars' ages (305–296 Ma) probably record cooling below 150–300 °C, while two grains most likely have higher closure temperatures. The temperature–time paths are characterised by a short thermal peak, by moderate average cooling rates and by a decrease in cooling rates from 100 °C/my at temperatures between 850–800 and 700 °C to 11–16 °C/my at temperatures down to 345–310 °C. Further cooling to feldspar closure for Ar was probably even slower. The lack of decompressional features, the moderate average cooling rates and the decline of cooling rates with time are not easily reconciled with a model of asthenospheric heating, rapid uplift and extension due to lithospheric delamination as proposed elsewhere. Instead, the high peak temperatures at comparatively shallow crustal levels along with the short thermal peak require external advective heating by hot mafic or ultramafic material. Received: 7 July 1999 / Accepted: 28 October 1999  相似文献   

6.
Uranium-series isotope ratios determined for 35 volcanic rocks and 4 glass separates erupted from ~36 to 4.8 ka at Mt. Mazama, Crater Lake, Oregon, identify both 230Th-excess and 238U-excess components. U–Th isotope compositions cover a wide range, exceeding those previously measured for the Cascade arc. Age-corrected (230Th/232Th) and (238U/232Th) activity ratios range from 1.113 to 1.464 and from 0.878 to 1.572 (44.4 % 230Th-excess to 8.8 % 238U-excess), respectively. The most distinctive aspect of the data set is the contrast in U–Th isotope ratios between low and high Sr (LSr, HSr) components that have been previously identified in products of the 7.7 ka caldera-forming climactic eruption and preclimactic rhyodacite lavas. The LSr component exclusively contains 238U-excess, but the HSr component, as well as more primitive lavas, are marked by 230Th-excess. 230Th-excesses such as those recorded at Mt. Mazama are commonly observed in the Cascades. Melting models suggest that high 230Th-excesses observed in the more primitive lavas evolved through mixing of a mantle melt with a partial melt of a mafic lower crustal composition that contained garnet in the residuum that was produced through dehydration melting of amphibolite that was initially garnet free. Dehydration melting in the lower crust offers a solution to the “hot-slab paradox” of the Cascades, where low volatile contents are predicted due to high slab temperatures, yet higher water contents than expected have been documented in erupted lavas. The 238U-excess observed at Mt. Mazama is rare in Cascade lavas, but occurs in more than half of the samples analyzed in this study. Traditionally, 238U-excess in arc magmas is interpreted to reflect slab fluid fluxing. Indeed, 238U-excess in arcs is common and likely masks 230Th-excess resulting from lower crustal interaction. Isotopic and trace element data, however, suggest a relatively minor role for slab fluid fluxing in the Cascades. We propose that 238U-excess reflects melting and assimilation of young, hydrothermally altered upper crust. The processes related to generating 238U-excess are likely important features at Mt. Mazama that accompanied development of a large-scale silicic magma chamber that led to the caldera-forming eruption.  相似文献   

7.
We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ) submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/(230Th) up to 2.97, while four samples are in 226Ra-230Th equilibrium within error. All KEJ samples have high (231Pa)/(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high 231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphibole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra-230Th equilibrium, forming rough positive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent fluid addition at the slab-wedge interface.The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity; such a model will also produce significant 238U-230Th and 226Ra-230Th disequilibrium in erupted lavas, meaning that signatures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the 238U-230Th, 226Ra-230Th, and 235U-231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the mantle wedge (reflecting variations in U/Th, daughter-parent ratios, fO2, and thermal structure), followed by modification by magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different U-series parent-daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than a few thousand years imposed by models whereby 226Ra excess is derived from the slab.  相似文献   

8.
U-series activity ratios, Sr-Nd-Pb isotopic ratios and major and trace element compositions have been determined on young basalts (<10 ka) and trachytes from the volcano Emuruangogolak in the Kenya Rift Valley. The basalts are mildly alkaline and are associated with small volumes of hawaiite. The mafic rocks are characterised by high (230Th/232Th) (≥1.06) with low (238U/230Th) ratios (≤0.72). They have variable incompatible trace element ratios (e.g. Zr/Nb, Ba/Zr), indicating that they represent a number of magmatic lineages. The trachytes, which comprise both comenditic and pantelleritic varieties, have significantly lower (230Th/232Th) ratios than the basalts, with clear differences between pantelleritic and comenditic types. The (238U/230Th) ratios in the pantellerites range from less, to greater, than 1. The variations in composition and isotopic diversity must represent different sources for the trachytes. Internal isochrons for the trachytes give U-Th ages of 14 to 40 ka, similar to single crystal laser fusion 40Ar/39Ar ages from sanidine phenocrysts (16–38 ka) for the same rocks. Post-crystallisation residence times of the trachytes were very short, implying relatively rapid movement of trachyte from magma chamber to the surface. Variations in the initial (230Th/232Th)0 ratios (0.69–1.14) of both basalts and trachytes indicate that Emuruangogolak has erupted a large range of isotopically diverse magmas over a very short period of time (38 ka), from conduits closely spaced around the summit of the volcano. Received: 29 May 1996 / Accepted: 24 November 1997  相似文献   

9.
Measurements of 238U-230Th-226Ra disequilibria, Sr-Nd-Pb-Hf isotopes and major-trace elements have been conducted for lavas erupted in the last quarter-millennium at Hekla volcano, Iceland. The volcanic rocks range from basalt to dacite. Most of the lavas (excluding dacitic samples) display limited compositional variations in radiogenic Sr-Nd-Pb-Hf isotopes (87Sr/86Sr = 0.70319-0.70322; 143Nd/144Nd = 0.51302-0.51305; 206Pb/204Pb = 19.04-19.06; 207Pb/204Pb = 15.53-15.54; 208Pb/204Pb = 38.61-38.65; 176Hf/177Hf = 0.28311-0.28312). All the samples possess (230Th/238U) disequilibrium with 230Th excesses, and they show systematic variations in (230Th/232Th) and (238U/232Th) ratios. The highest 226Ra excesses occur in the basalt and most differentiated andesite lavas, while some basaltic-andesite lavas have (226Ra/230Th) ratio that are close to equilibrium. The 238U-230Th-226Ra disequilibria variations cannot be produced by simple closed-system fractional crystallization with radioactive decay of 230Th and 226Ra in a magma chamber. A closed-system fractional crystallization model and assimilation and fractional crystallization (AFC) model indicate that the least differentiated basaltic andesites were derived from basalt by fractional crystallization with a differentiation age of ∼24 ± 11 kyr, whereas the andesites were formed by assimilation of crustal material and fractionation of the basaltic-andesites within 2 kyr. Apatite is inferred to play a key role in fractionating the parent-daughter nuclides in 230Th-238U and 226Ra-230Th to make the observed variations. Our proposed model is that several batches of basaltic-andesite magmas that formed by fractional crystallization of a basaltic melt from a deeper reservoir, were periodically injected into the shallow crust to form individual magma pockets, and subsequently modifying the original magma compositions via simultaneous assimilation and fractional crystallization. The assimilant is the dacitic melt, which formed by partial melting of the crust.  相似文献   

10.
We use coupled 238U-230Th and 235U-231Pa disequilibria measurements from Pico Island, Azores to examine the melting behavior of the underlying mantle. U-series disequilibria in young, mafic lavas are dependent on the melting rate of their source, which in most cases is primarily controlled by its melt productivity. Mafic lithologies such as eclogite and pyroxenite have much higher melt productivities than peridotite and so U-series measurements may provide constraints on the mineralogy of the melting mantle. Recent Pico Mountain lavas show limited geochemical variations and a restricted range of U-series disequilibria with (230Th/238U) = 1.22-1.25 and (231Pa/235U) = 1.46-1.50. Using a simple, dynamic melting model of a homogeneous source, these results can be reproduced with melting rates of <1 × 10−4 kg/m3/a and melt porosities of <0.7% near the onset of melting. For a plausible range of upwelling rates, this implies that the melt productivity is <6%/GPa. This value is consistent with a garnet peridotite source but not with more highly productive mafic lithologies. Given independent evidence for the involvement of mafic lithologies such as recycled oceanic crust in Pico magmagenesis, we suggest a scenario in which initial eclogitic melts are dispersed through melt-rock reaction into a larger volume of surrounding peridotite. Subsequent re-melting of the resultant incompatible element enriched peridotite carries a geochemical signature of the mafic lithologies but not necessarily a record of their high melt productivity.  相似文献   

11.
In order to unravel magma processes and the geochemical evolution of shallow plumbing systems beneath active volcanoes, we investigated U-series disequilibria of rocks erupted over the past 500 years (1469-2000 AD) from Miyakejima volcano, Izu arc, Japan. Miyakejima volcanic rocks show 238U-230Th-226Ra disequilibria with excess 238U and 226Ra, due to the addition of slab-derived fluids to the mantle wedge. Basaltic bombs of the 2000 AD eruption have the lowest (230Th/232Th) ratio compared to older Miyakejima eruptives, yielding the youngest 238U-230Th model age of 2 kyr. This reinforces our previous model that fluid release from the slab and subsequent magma generation in the mantle wedge beneath Miyakejima occur episodically on a several-kyr timescale. In the last 500 years, Miyakejima eruptives show: (1) a vertical trend in a (230Th/232Th)-(238U/232Th) diagram and (2) a positive linear correlation in a (226Ra/230Th)0 − 1/230Th diagram, which is also observed in lavas from some of the single eruptions (e.g., 1940, 1962, and 1983 AD). The variations cannot be produced by simple fractional crystallization in a magma chamber with radioactive decay of 230Th and 226Ra, but it is possibly produced by synchronous generation of melts in the mantle wedge with different upwelling rate or addition of multiple slab-derived fluids. A much more favorable scenario is that some basaltic magmas were intermittently supplied from deep in the mantle and injected into the crust, subsequently modifying the original magma composition and producing variations in (230Th/232Th) and (226Ra/230Th)0 ratios via assimilation and fractional crystallization (AFC). The assimilant of the AFC process would be a volcanic edifice of previous Miyakejima magmatism. Due to the relatively short timescales involved, the interaction between the assimilant and recent Miyakejima magmatism has not been recorded by the Sr-Nd-Pb isotopic systems. In such cases, Th isotopes and (226Ra/230Th) ratio are excellent geochemical tracers of magmatic evolution.  相似文献   

12.
A suite of peralkaline trachytes from Longonot volcano, Kenya,which erupted during the last 6000 years, has been analysedfor major and trace elements, Pb and Nd isotopes, and U–Th–Radisequilibria. The lavas are divided into three stratigraphicgroups of trachytes (Lt2a, Lt2b and Lt3), and hybrid lavas,designated LMx1 and LMx2, which, respectively, pre-date andpost-date the Lt2 lavas. Major and trace elements are consistent,with up to 37% within-group fractional crystallization of predominantlyalkali feldspar. The parental magma for the different trachytegroups had a more mafic composition—probably hawaiitic.Nd and Pb isotopes show minimal variation, both within and betweenmagma groups, and indicate that up to 10% comendite magma fromthe neighbouring Olkaria volcanic field may have intermixedwith the Longonot magma. (230Th/238U) disequilibria indicatethat limited U/Th fractionation occurred during the past 10kyr, whereas (226Ra/230Th) disequilibria reflect the effectof alkali feldspar fractionation >8 kyr ago in the Lt2a lavas,between 3 and 7 kyr ago in the Lt2b lavas and in the past 3kyr for the Lt3 lavas. (226Ra/230Th) disequilibria in the Lt2blavas are interpreted using a model that combines the equationsof radioactive decay and in-growth with Rayleigh crystallizationto give fractionation rates of about 0·2 x 10–4/yearfor the evolution of hawaiite to trachyte, but more rapid ratesof up to 3 x 10–4/year for fractionation within the trachytesequence. (226Ra/230Th) from two whole-rock–alkali feldsparpairs are interpreted to show the crystals formed at 5800 yearsBP (Lt2b) and 2800 years BP (Lt3), implying that phenocrystformation continued almost up to the time of eruption. The resultsstrongly indicate that fractionated magmas can be stored forperiods on the order of 1000–2500 years prior to eruption,whereas other magmas were erupted as fractionation was proceeding. KEY WORDS: trachyte; magma chambers; u-series; Kenya  相似文献   

13.
The subaerial part of the Stromboli stratovolcano was builtup in the last 100 kyr through six periods of activity; theerupted magmas record the largest compositional variation ofall the Aeolian arc volcanoes (calc-alkaline, shoshonitic, andpotassic alkaline magma series). The trace element characteristicsof the less evolved magmas of each period of activity are coherentlycorrelated with their radiogenic isotope (Sr, Nd, Pb) composition,and are typical of volcanic arc rocks. In terms of U-seriesisotopes, samples from the different magma series have both238U and 230Th excesses, and this distinctive feature providesadditional constraints on source enrichment processes withinthe mantle wedge and on the mechanism of partial melting. Overallthe complete set of data demonstrates that the genesis of thedifferent magma series at Stromboli can be accommodated in amantle source that experienced two distinct enrichment processesby different parts of the subducting oceanic crust of the Ionianslab. The first was caused by supercritical liquids originatingfrom the basaltic and sedimentary parts of the subducting slabat >5 GPa and 900°C. The second was induced by aqueousfluids, again originating from the basaltic and sedimentaryparts of the slab, released from a shallower part of the subductedIonian slab (< 5 GPa and 800°C). U–Th disequilibriaconstrain the timing of the first metasomatic event (Stage I:supercritical liquids) at >435 ka, whereas the second event(Stage II: aqueous fluids) occurred at 100 ka. The high-angledip of the Ionian slab (70°) caused the superimpositionof the metasomatizing agents of the two enrichment processesin the same volume of the mantle wedge, explaining the occurrenceof such different magma series in a single volcanic edifice.The U–Th disequilibria provide evidence for dynamic meltingof the metasomatized mantle wedge combined with an ageing effectresulting from the restoration of secular equilibrium afterthe perturbation caused by the U-rich aqueous fluids of StageII. The trace element and radiogenic isotope (U, Th, Sr, Nd,Pb) signature of the mantle source of the magmas at Stromboliis thus dependent upon the amount of supercritical liquids andaqueous fluids released by the two components of the subductedslab, whereas the distinctive 238U and 230Th excesses of themagmas result from a combination of mantle ageing and time-dependentdynamic melting. The geochemical and radiogenic isotope signatureof the mantle source beneath Stromboli places important constraintson the isotopic polarity from Southern Latium to the Aeolianarc attributed to the effect of a HIMU mantle component followingeither lateral inflow of foreland mantle material or upwellingof a mantle plume in the centre of the Tyrrhenian basin. Ourgeochemical model demonstrates that the high 206Pb/204Pb ofthe putative ‘HIMU’ mantle component could be equallyformed during metasomatism of the pre-existing mantle wedgeby either the supercritical liquid (Stage I) or aqueous fluid(Stage II) released by the subducted altered basalt of the Ionianplate. KEY WORDS: radiogenic isotopes; U–Th disequilibria; mantle metasomatism; supercritical liquid; aqueous fluid; Stromboli  相似文献   

14.
The 238U-230Th-226Ra and 235U-231Pa disequilibria have been measured by mass spectrometry in historic lavas from the Kamchatka arc. The samples come from three closely located volcanoes in the Central Kamchatka Depression (CKD), the most active region of subducted-related volcanism in the world. The large excesses of 226Ra over 230Th found in the CKD lavas are believed to be linked to slab dehydration. Moreover, the samples show the uncommon feature of (230Th/238U) activity ratios both lower and higher than 1. The U-series disequilibria are characterized by binary trends between activity ratios, with (231Pa/235U) ratios all >1. It is shown that these correlations cannot be explained by a simple process involving a combination of slab dehydration and melting. We suggest that they are more likely to reflect mixing between two end-members: a high-magnesia basalt (HMB) end-member with a clear slab fluid signature and a high-alumina andesite (HAA) end-member reflecting the contribution of a slab-derived melt. The U-Th-Ra characteristics of the HMB end-member can be explained either by a two-step fluid addition with a time lag of 150 ka between each event or by continuous dehydration. The inferred composition for the dehydrating slab is a phengite-bearing eclogite. Equilibrium transport or dynamic melting can both account for 231Pa excess over 235U in HMB end-member. Nevertheless, dynamic melting is preferred as equilibrium transport melting requires unrealistically high upwelling velocities to preserve fluid-derived 226Ra/230Th. A continuous flux melting model is also tested. In this model, 231Pa-235U is quickly dominated by fluid addition and, for realistic extents of melting, this process cannot account for (231Pa/235U) ratios as high as 1.6, as observed in the HMB end-member.The involvement of a melt derived from the subducted oceanic crust is more likely for explaining the HAA end-member compositions than crustal assimilation. Melting of the oceanic crust is believed to occur in presence of residual phengite and rutile, resulting in no 226Ra-230Th disequilibrium and low 231Pa excess over 235U in the high-alumina andesites. Consequently, it appears that high-alumina andesites and high-magnesia basalts have distinct origins: the former being derived from melting of the subducted oceanic crust and the latter from hydrated mantle. It seems that there is no genetic link between these two magma types, in contrast with what was previously believed.  相似文献   

15.
Recent advances in U–Pb geochronology allow unprecedented levels of precision in the determination of geological ages. However, increased precision has also illuminated the importance of understanding subtle sources of open-system behavior such as Pb-loss, inheritance, intermediate daughter product disequilibria, and the accuracy of the model assumptions for initial Pb. Deconvolution of these effects allows a much richer understanding of the power and limitations of U–Pb geochronology and thermochronology. In this study, we report high-precision ID-TIMS U–Pb data from zircon, baddelleyite, titanite and apatite from the McClure Mountain syenite, from which the 40Ar/39Ar hornblende standard MMhb is derived. We find that excess 206Pb in zircon due to inclusions of high-Th minerals and elevated Th/U in titanite and apatite jeopardize the utility of the 238U–206Pb system in this rock. Strongly air-abraded zircons give dates that are younger than chemical-abraded zircons, which yield a statistically robust 207Pb/235U date of 523.98±0.12 Ma that is interpreted as the crystallization age. We explore the best method of Pbc correction in titanite and apatite by analyzing the U–Pb isotopes of K-feldspar and using 2-D and 3-D regression methods—the latter of which yields the best results in each case. However, the calculated compositions of Pbc for titanite, apatite and K-feldspar are different, implying that using a single Pbc correction for multiple U–Pb thermochronometers may be inaccurate. The U–Pb thermochronological results are used to predict a closure time for Ar in hornblende of 522.98±1.00 Ma. Widely cited K–Ar and 40Ar/39Ar dates overlap with the U–Pb date, and relatively large errors make it impossible to verify whether U–Pb dates are systematically ≤1% older than K–Ar and 40Ar/39Ar dates.  相似文献   

16.
Although most arc lavas have experienced significant magma differentiation, the effect of the differentiation process on U-series disequilibria is still poorly understood. Here we present a numerical model for simulating the effect of time-dependent magma differentiation processes on U-series disequilibria in lavas from convergent margins. Our model shows that, in a closed system with fractional crystallization, the ageing effect can decrease U-series disequilibria via radioactive decay while in an open system, both ageing and bulk assimilation of old crustal material serve to reduce the primary U-series disequilibria. In contrast, with recharge of refresh magma, significant 226Ra excess in erupted lavas can be maintained even if the average residence time is longer than 8000 years.The positive correlations of (226Ra/230Th) between Sr/Th or Ba/Th in young lavas from convergent margins have been widely used as evidence of fluid addition generating the observed 226Ra excess in subduction zones. We assess to what extent the positive correlations of (226Ra/230Th) with Sr/Th and Ba/Th observed in the Tonga arc could reflect AFC process. Results of our model show that these positive correlations can be produced during time-dependent magma differentiation at shallow crustal levels. Specifically, fractional crystallization of plagioclase and amphibole coupled with contemporaneous decay of 226Ra can produce positive correlations between (226Ra/230Th) and Sr/Th or Ba/Th (to a lesser extent). Therefore, the correlations of (226Ra/230Th) with Sr/Th and Ba/Th cannot be used to unambiguously support the fluid addition model, and the strength of previous conclusions regarding recent fluid addition and ultra-fast ascent rates of arc magmas is significantly lessened.  相似文献   

17.
Datations of ancient lavas from the Chaîne des Puys through the 230Th-238U radioactive disequilibrium method confirm the eruption of several basaltic or slightly differentiated lavas around 40,000 years ago. The study of (230Th/232Th)0 initial ratios of these lava flows clearly demonstrates the influence of a crustal contamination of magmas superimposed to crystal fractionation. This contamination probably affects many trace elements, in particular, U, Th and Sr. A model based on the (230Th/232Th)0 initial ratio variations of non-contaminated lavas permits to consider that the first eruptions in the Chaîne des Puys could have occurred about 100,000 years ago.  相似文献   

18.
We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of (230Th/238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/86Sr and lower 143Nd/144Nd than Bicol lavas (87Sr/86Sr = 0.7042-0.7046, 143Nd/144Nd = 0.51281-0.51290 vs. 87Sr/86Sr = 0.70371-0.70391, 143Nd/144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/204Pb vs. 206Pb/204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial (230Th/232Th) of the source is ∼0.6-0.7. The implication of either model is that inclined arrays on the U-Th equiline diagram may not have chronologic significance. Modeling also suggests that U-series disequilibria are influenced by the tectonic convergence rate, which dictates mantle matrix flow. Thus with slower matrix flow there is a greater degree of 230Th ingrowth. While other factors such as prior mantle depletion and addition of a subducted component may explain some aspects of U-series data, an overall global correlation between tectonic convergence rate and the extent of U-Th disequilibria may originate from melting processes.  相似文献   

19.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

20.
The processes involved in the formation and transport of partial melts above subducting plates remain poorly constrained relative to those at mid-ocean ridges. In particular, 238U-230Th-226Ra disequilibria, that might normally be used to constrain melting dynamics, tend to be swamped by the effects of fluid addition from the down-going plate. The 231Pa-235U system provides an exciting exception to this because the highly incompatible nature of Pa means that fractionation and in-growth during partial melting overwrite the effects of fluid U addition. We present 231Pa-235U data on 50 well-characterised lavas from seven subduction zones in order to examine partial melting processes. Measured (231Pa/235U) ratios are all >1 and 15% are >2. Overall (231Pa/235U) shows broad positive correlations with (230Th/238U) and La/Yb and negative trends against Ba/Th and (226Ra/230Th). These systematics can differ from arc to arc but suggest that (231Pa/235U) tends to be higher in sediment-rich arc lavas where the effects of fluid addition are muted and there is less of a 231Pa deficit for melting to overprint. We have explored the effects of decompression melting, frictional drag dynamic melting with and without ageing subsequent to fluid U addition to the wedge as well as flux melting models. Globally, average (231Pa/235U) appears to correlate negatively with convergence rate and so in the numerical models we use the local subduction rate for the rate of matrix flow through the melting zone. Using this assumption and reasonable values for other parameters, the melting models can simulate the overall range of (231Pa/235U) and some of the data trends. However, it is clear that local variations in some parameters, especially source composition and extent of melting, exert a major influence on 231Pa-235U disequilibria. Some data, which lie at a high angle to the modelled trends, may be explained by mixing between small degree hydrous melts formed near the slab and larger degree, decompression melts produced at shallow depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号