首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Permo-Triassic pelite-carbonate rock series (with interacalated metabasitic rocks) in the Cordilleras Béticas, Spain, was metamorphosed during the Alpine metamorphism at high pressures (P min near 18 kbar). The rocks show well preserved sedimentary features of evaporites such as pseudomorphs of talc, of kyanite-phengitetalc-biotite, and of quartz after sulfate minerals, and relicts of baryte, anhydrite, NaCl, and KCl, indicating a salt-clay mixture of illite, chlorite, talc, and halite as the original rock. The evaporitic metapelites have a whole rock composition characterized by high Mg/(Mg+Ca) ratios>0.7, variable alkaline and Sr, Ba, contents, but are mostly K2O rich (<8.8 wt%). The F (<2600 ppm), Cl (<3600 ppm), and P2O5 (<0.24 wt%) contents are also high. The pelitic member of this series is a fine grained biotite rock. Kyanite-phengite-talc-biotite aggregates in pseudomorphs developed in the high pressure stage. Albite-rich plagioclase was formed when the rocks crossed the albite stability curve in the early stages of the uplift. Scapolite, rich in NaCl (Ca/(Ca+Na) mol% 24–40) and poor in SO4, with Cl/(Cl+CO3) ratios between 0.6 and 0.8, formed as porphyroblasts, sometimes replacing up to 60% of the rock in a late stage of metamorphism (between 10 and 5 kbar, near 600°C). No reaction with albite is observed, and the scapolite formed from biotite by: $$\begin{gathered} Al - biotite + CaCO_3 + NaCl + SiO_2 \hfill \\ = Al - poor biotite + scapolite + MgCO_3 + KCl \hfill \\ + MgCl_2 + H_2 O \hfill \\ \end{gathered}$$ Calculated fluid composition in equilibrium with scapolite indicates varying salt concentrations in the fluid. Distribution of Cl and F in biotite and apatite also indicates varying fluid compositions.  相似文献   

2.
Calcic amphiboles coexisting with epidotegroup minerals (zoisite, clinozoisite, epidote) and/or clinopyroxene±plagioclase±quartz±garnet occur in amphibolites and calc-silicate rocks that underwent amphibolite to lower granulite-facies metamorphism in the Acadian metamorphic high of central Massachusetts, USA. Across the region, peak metamorphic conditions range from about 580° C and 6.2 kbar to 730° C and 6.3 kbar. The coexistence of most Ca-amphiboles with Fe3+-rich epidote-group minerals suggests the presence of Fe3+ in most of these amphiboles. An empirical Fe3+ estimation for the microprobe analyses is based on two constraints: the Na?Ca content of the M4 sites of Ca-saturated, gravimetrically analyzed hornblendes gives the relation: Ca(M4) c =-1.479 Na(M4) c +2 (c=corrected). The second constraint is the stoichiometric equation Ca(M4)+Na(M4)+FM=15, where FM is the sum of all cations exclusive of Ca, Na, and K. Solving the two equations simultaneously gives: 20.185=0.479 Ca(M4)+1.479 ΣFM. Starting with the uncorrected values of Ca(M4) u and ΣFM(M4) u (u = uncorrected) of the all ferrous formula, the normalization factor NF for calculating the corrected cations of the ferric formulas is: 20.185/(0.478 Ca(M4) u +1.479 ΣFM u ). From the deficient oxygen the Fe3+ content which is equal to 2(23-ΣOX) can be calculated. Determinations of Fe3+ contents of four hornblende separates by Mössbauer spectroscopy are in agreement with the calculated values. The Ca-amphiboles show systematic changes in composition with increasing grade of metamorphism within the amphibolite and lower granulite-facies zones: increasing edenite and tschermakite substitution, increasing Ti content, and increasing Fe2+/(Fe2++Mg) ratio. In addition, the coexisting clinopyroxenes are also characterized by an increase in Fe2+/(Fe2++Mg) ratio. In quartz-free rocks with coexisting Ca-amphibole and plagioclase there is an increase in the ratio X Ab/X Ed, where X Ab=Na/(Na+Ca) in plagioclase and X Ed=Na in the amphibole A-site. These chemical changes in mineral composition together with the disappearance of epidote at the transition to granulite-facies metamorphic conditions are attributed to the continuous reaction: albite+epidote+Fe-Mg hornblende→Fe?Mg clinopyroxene+anorthite+(NaAlSi-1)Hbl+H2O.  相似文献   

3.
松辽盆地白垩系砂岩长石碎屑的钠长石化作用   总被引:12,自引:0,他引:12  
松辽盆地白垩系砂岩以长石岩屑砂岩和岩屑长石砂岩为特征。砂岩中发育长石碎屑、岩屑等不稳定组分,而且随着埋藏深度加深(成岩作用加强)钾长石逐渐减少并最终在2700m以下消失。斜长石碎屑中钠长石组分逐渐增多,钙长石组分逐渐减少,最终形成纯钠端元的钠长石。在成岩过程中长石碎屑的钠长石化主要有3种方式:①由离子交代作用导致长石碎屑的钠长石化;②长石碎屑边缘钠长石次生生长;③与长石碎屑溶解伴生的新生钠长石作用。结合热动力学平衡原理分析,斜长石的钠长石化基本不受成岩温度和压力的制约,而钾长石的钠长石化需要较高的成岩温度和压力作用才能进行。因此,斜长石的钠长石化可见于成岩早期,而钾长石的钠长石化只发生于成岩晚期。  相似文献   

4.
Lunar plagioclase posed an enigma because optical properties indicate slow cooling while structural properties suggest rapid quenching when compared directly to terrestrial plagioclase. If, however, the An-content is inferred from the Al/Si ratio rather than from the Ca/Na ratio, lunar plagioclase corresponds more closely to normal volcanic plagioclase. The differences between An=4(Al/(Al+Si))-1 and An=Ca/(Ca+Na+K) is caused by substitutions which appear so far to be unique to lunar feldspars. A vector representation of chemical composition makes it possible to single out several substitutions which account for the chemical peculiarities of lunar plagioclase. It permits to assign sites in the structure to various minor elements simply from the chemical analysis without having to rely on sophisticated spectroscopic techniques or an X-ray structure determination. 1. The deficiency in Al+Si (up to 0.06 per formula unit) is compensated for by Fe, Mg, and small amounts of Na or Ca occupying tetrahedral sites. The Ca/Na ratio is increased accordingly to balance the electric charge. This substitution accounts for most of the differences. 2. The vacancycoupled substitution Ca+□ → 2 Na (Weill et al., 1970) is another cause for the increased Ca/Na ratio. 3. The amount of alkali evaporation from plagioclase, if it occurred, is probably small. These unusual substitutions are an expression of special conditions on the moon during the crystallization of plagioclase. Crystallization at high temperatures, rapid cooling, and peculiar magma composition seem to be important factors, but experimental work and detailed study of terrestrial volcanic plagioclase are necessary to interpret the chemical composition quantitatively.  相似文献   

5.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

6.
Over the range Ca/(Ca + Na) from zero to 0.75, scapolites vary linearly between Na4Al3Si9O24Cl and NaCa3Al5Si7O24CO3, by means of a coupled replacement of Na3Si2Cl by Ca3Al2CO3. Ca includes minor Sr, Na includes K, and CO3 may include substantial SO4. From Ca/(Ca + Na) = 0.75 to 1.00, variation is between NaCa3Al5Si7O24CO3 and Ca4Al6Si6O24CO3, by means of a coupled replacement of NaSi by CaAl, as in plagioclase. Anion substitution is complete at the 0.75 point. Recalculation of scapolite analyses on the basis of Al + Si atoms = 12.0, as suggested by computed unit cell contents, offers a reasonable basis for normalization of atomic proportions. On this basis, Ca + Sr + Na + K + Fe atoms total very close to 4.0. New limits on the minor element content of scapolite are proposed. In view of the inflection at 0.75, subdivision of the scapolites at Ca/(Ca + Na) ratios of 0.25, 0.5, and 0.75 seems more logical than the 0.2, 0.5, and 0.8 limits used hitherto for marialite, dipyre, mizzonite, and meionite.  相似文献   

7.
Iron-oxide–Cu–Au deposits, particularly those formed in deeper level (plutonic) environments, are commonly characterized by regional scale sodic(–calcic) alteration, which typically formed pre- or syn-Cu–Au mineralization. The sodic(–calcic) assemblages include albite, scapolite, pyroxene, actinolite, apatite, titanite, epidote and calcite. The consistent presence of coexisting hypersaline aqueous and CO2-rich fluids in minerals from sodic(–calcic) alteration and associated Fe-oxide–Cu–Au deposits is the result of unmixing of H2O–CO2–NaCl ± CaCl2–KCl magmatic fluids. Experimental evidence indicates that the Na/(Na + K) ratio of fluids in equilibrium with two alkali feldspars in CO3 2−-bearing parent fluids would be significantly higher than in unmixed chloride-bearing aqueous fluids. Therefore, fluid unmixing caused by decreases in temperature and/or pressure, will result in albitization of wall rocks, as is observed in most deeper level Fe-oxide–Cu–Au deposits. This alteration style may be succeeded by K-feldspathization with decreasing temperature because of the increase in equilibrium Na/(Na + K) in chloride-bearing fluids buffered by alkali feldspars. Received: 26 May 1999 / Accepted: 8 June 2000  相似文献   

8.
The influence of alkaline aqueous solutions on the properties of bentonite was investigated to evaluate the performance of bentonitic engineered barriers when contacted with alkaline groundwater. Batch and hydraulic conductivity tests were conducted on Na-bentonite using six different alkaline aqueous solutions. For the batch tests, almost no change in the montmorillonite fraction of the bentonite was observed after reacting with alkaline solutions (pH = 8.4–13.1), regardless of the solution type. On the other hand, aluminosilicate minerals (e.g., albite) were dissolved and secondary minerals (e.g., anorthite) were formed in alkaline NaOH solutions (pH > 13). The cation (Ca or Na) concentration primarily affected the swelling properties of bentonite rather than the pH of the solution, which was comparable to the results of the hydraulic conductivity tests. For the Ca solutions, the hydraulic conductivity of the bentonite specimen to the 0.02 mol/L Ca(OH)2 solution (6.5 × 10?9 cm/s) was approximately an order of magnitude lower than that of the bentonite specimen to the 0.02 mol/L Ca(OH)2 + 1 mol/L CaCl2 solution (5.0 × 10?8 cm/s), whereas the hydraulic conductivity to the 0.02 mol/L Ca(OH)2 + 1 mol/L CaCl2 solution (pH = 11.3) (5.0 × 10?8 cm/s) was slightly higher than that to the 1 mol/L CaCl2 solution (pHi = 8.4) (4.4 × 10?8 cm/s). For the NaOH solutions with pH > 13, the hydraulic conductivity of the bentonite specimen decreased with increasing Na concentration, suggesting that the effect of Na concentration was more dominant than that of permeant pH.  相似文献   

9.
Modern rift zone hydrothermal brines are typically CaCl2-bearing brines, an unusual chemical signature they share with certain oil field brines, fluid inclusions in ore minerals and a few uncommon saline lakes. Many origins have been suggested for such CaCl2 brines but in the Reykjanes, Iceland, geothermal system a strong empirical case can be made for a basalt-seawater interaction origin. To examine this mechanism of CaCl2 brine evolution some simple mass balance calculations were carried out. Average Reykjanes olivine tholeiite was “reacted” with average North Atlantic seawater to make an albite-chlorite-epidotesphene rock using Al2O3 as the conservative rock component and Cl as the conservative fluid component. The excess components released by the basalt to the fluid were “precipitated” at 275° C as quartz, calcite, anhydrite, magnetite and pyrite to complete the conversion to greenstone. The resulting fluid was a CaCl2 brine of seawater chlorinity with a composition remarkably similar to the actual Reykjanes brine at 1750 m depth. Thus, the calculations strongly support the idea that the Reykjanes CaCl2 brines result from “closed system” oceanic basalt-seawater interaction (albitization — chloritization mechanism) at greenschist facies temperatures. The calculation gives a seawater: basalt mass ratio of 3∶1 to 4∶1 (vol. ratio of 9∶1 to 12∶1), in keeping with experimental results, submarine vent data and with ocean crust cooling calculations. The brine becomes anoxic because there is insufficient dissolved or combined oxygen to balance all the Fe released from the basalt during alteration. Large excesses of Ca are released to the fluid and precipitate out in the form of anhydrite which essentially sweeps the brine free of sulfate leaving an elevated Ca concentration. The calculated rock-water interaction basically involves Na + Mg + SO4 ? Ca + K, simulating chemical differences observed between oceanic basalts and greenstones from many mid-ocean ridges.  相似文献   

10.
The Sauwald Zone, located at the southern rim of the Bohemian Massif in Upper Austria, belongs to the Moldanubian Unit. It exposes uniform biotite + plagioclase ± cordierite paragneisses that formed during the post-collisional high-T/low-P stage of the Variscan orogeny. Rare metapelitic inlayers contain the mineral assemblage garnet + cordierite + green spinel + sillimanite + K-feldspar + plagioclase + biotite + quartz. Mineral chemical and textural data indicate four stages of mineral growth: (1) peak assemblage as inclusions in garnet (stage 1): garnet core + cordierite + green spinel + sillimanite + plagioclase (An35–65); (2) post-peak assemblages in the matrix (stages 2, 3): cordierite + spinel (brown-green and brown) ± sillimanite ± garnet rim + plagioclase (An10–45); and (3) late-stage growth of fibrolite, muscovite and albite (An0–15) during stage 4. Calculation of the P–T conditions of the peak assemblage (stage 1) yields 750–840°C, 0.29–0.53 GPa and for the stage 2 matrix assemblage garnet + cordierite + green spinel + sillimanite + plagioclase 620–730°C, 0.27–0.36 GPa. The observed phase relations indicate a clockwise P–T path, which terminates below 0.38 GPa. The P–T evolution of the Sauwald Zone and the Monotonous Unit are very similar, however, monazite ages of the former are younger (321 ± 9 Ma vs. 334 ± 1 Ma). This indicates that high-T/low-P metamorphism in the Sauwald Zone was either of longer duration or there were two independent phases of late-Variscan low-P/high-T metamorphism in the Moldanubian Unit.  相似文献   

11.
Coexisting Na-plagioclases from greenschists both in the thermal aureole of the Kasugamura Granite, Japan, and in the low-P metamorphic zone of Yap Island, western Pacific were analyzed in great detail; the peristerite solvus was determined for each suite. The asymmetric solvus has steep albite-rich and gentle oligoclase-rich limbs that are similar to those for higher pressure series. The present results together with those from Vermont, New Zealand, and the Sanbagawa belt indicate that the peristerite solvus shifts toward the albite component and higher temperature with increasing pressure. With increasing pressure, albite co-existing with oligoclase (An=100 Ca/Ca+ Na=20) varies in composition from An 8–9 (in Kasugamura), through An 3 (in Yap Island and Vermont), to An 1 (in New Zealand) and An less than 0.5 (in the Sanbagawa belt). The consolute temperatures for the peristerite solvus estimated from available geothermometry are 420° C in Kasugamura, 450–550° C in Vermont and 550°–600° C in the Sanbagawa belt. The variation of plagioclase composition in progressive metamorphic zones is explained by intersection of a plagioclase-forming reaction and the peristerite immiscibility gap in an isobaric T-X An diagram. The greenschist zone is characterized by albite, the transition zone by occurrence of peristerite pairs and the amphibolite zone by plagioclase of An 20–50.  相似文献   

12.
The theory of divariant reactions is investigated in some detail and approaches involving simultaneously operating reactions and X Mg isopleths are combined. Using the Gibbs' method (Spear et al. 1982), a general equation is derived for X Mg isopleth slopes in FMAS and CFMAS, which may be applied to any divariant assemblage in these systems. Isopleth slopes are calculated for a number of divariant FMAS and CFMAS reactions inferred to have operated in Sri Lankan granulites, giving more rigorous constraints on the local P-T path. Isopleth slopes are also calculated for the trivariant CFMAS reaction orthopyroxene + plagioclase = garnet + quartz. The resulting dP/dT range from +8 to +18 bar/K. Application to Sri Lankan granulites confirms an earlier hypothesis (Faulhaber and Raith 1991) that a retrograde path with a dP/dT of ~10–15 bar/K may cause garnet growth in charnockites and garnet breakdown in metabasites. It is shown here that dP/dT depends primarily on the Ca contents of garnet and plagioclase. Large variations in isopleth and reaction line slopes are possible, due to the thermodynamic effect of additional components in solid solutions, e.g. albite in plagioclase. This has a good potential for the assessment of the exact form of P-T paths. Equations to calculate isopleth slopes could be included in software packages aimed at defining P-T estimates, enabling geologists to derive realistic P-T paths.  相似文献   

13.
A modulation function representing the position and density of (Na, Ca) atoms in the superstructure of the e-plagioclase has been derived from the average structures of different plagioclase and a general modulation theory. Based on this function the superstructure of bytownite (An73) has been studied with the single crystal X-ray method. The cell dimensions by Megaw's axes are a=7.946(3)A, b=67.09(2)A, c=12.236(4)A, α=39.03(1)°, β=45.63(1)° and γ=59.63(1)°. Z=18(Na, Ca) Al(Al, Si)Si2O8. The initial phase factor of the modulation function for bytownite has been obtained from the intensity data of the satellite reflections. This modulation function indicates a coherent small-scale alternation of the Na-rich and Ca-rich bands in the superstructure. This superstructure has been refined by applying the albite and anorthite structures to the Na-rich and Ca-rich bands, respectively. The change of the superstructure of the e-plagioclase due to the compositional change has been described based on the movements of the satellites in reciprocal space. The direction of the coherent small-scale intergrowth of the anorthite-like and albite-like bands is perpendicular to the t vector. The thickness of the intergrowth is 1/|t|. Both direction and thickness change regularly from An75 to An25.  相似文献   

14.
The data on the mineral composition and crystallization conditions of magnesian skarn and magnetite ore at contacts of dolerite with rock salt and dolomite in ore-bearing volcanic—tectonic structures of the Angara—Ilim type have been integrated and systematized. Optical microscopy, scanning and transmission electron microscopy, electron microprobe analysis, electron paramagnetic resonance, Raman and IR spectroscopy, and methods of mineralogical thermometry were used for studying minerals and inclusions contained therein. The most diverse products of metasomatic reactions are found in the vicinity of a shallow-seated magma chamber that was formed in Lower Cambrian carbonate and saliferous rocks under a screen of terrigenous sequences. Conformable lodes of spinel-forsterite skarn and calciphyre impregnated with magnesian magnetite replaced dolomite near the central magma conduit and apical portions of igneous bodies. At the postmagmatic stage, the following mineral assemblages were formed at contacts of dolerite with dolomite: (1) spinel + fassaite + forsterite + magnetite (T = 820?740°C), (2) phlogopite + titanite + pargasite + magnetite (T = 600–500°C), And (3) clinochlore + serpentine + pyrrhotite (T = 450°C and lower). Rock salt is transformed at the contact into halitite as an analogue of calciphyre. The specific features of sedimentary, contact-metasomatic, and hydrothermal generations of halite have been established. The primary sedimentary halite contains solid inclusions of sylvite, carnallite, anhydrite, polyhalite, quartz, astrakhanite, and antarcticite; nitrogen, methane, and complex hydrocarbons have been detected in gas inclusions; and the liquid inclusions are largely aqueous, with local hydrocarbon films. The contact-metasomatic halite is distinguished by a fine-grained structure and the occurrence of anhydrous salt phases (CaCl2 · KCl, CaCl2, nMgCl2 · mCaCl2) and high-density gases (CO2, H2S, N2, CH4, etc.) as inclusions. The low-temperature hydrothermal halite, which occurs in skarnified and unaltered silicate rocks and in ore, is characterized by a low salinity of aqueous inclusions and the absence of solid inclusions. The composition and aggregative state of inclusions in halite and forsterite indicate that salt melt-solution as a product of melting and dissolution of salt was the main agent of high-temperature metasomatism. Its total salinity was not lower than 60%. The composition and microstructure of magnetite systematically change in different mineral assemblages. Magnetite is formed as a result of extraction of iron together with silicon and phosphorus from dolerite. The first generation of magnetite is represented by mixed crystals, products of exsolution in the Fe-Mg-Al-Ti-Mn-O system. The Ti content is higher at the contact of dolerite with rock salt, whereas, at the contact with dolomite, magnetite is enriched in Mg. The second generation of magnetite does not contain structural admixtures. The distribution of boron minerals and complex crystal hydrates shows that connate water of sedimentary rocks could have participated in hydrothermal metasomatic processes.  相似文献   

15.
The Precambrian basement rocks exposed along Qift–Quseir asphaltic road, central Eastern Desert of Egypt, exhibit two contrasted tectonic units, each of which has its own lithology structural style and grade of metamorphism. They are intruded by dolerite and diorite dykes. The alkali (Na2O+K2O) and TiO2 contents increase whereas Al2O3, FeO, MgO, CaO and MnO decrease with increasing SiO2 from dolerites to diorites. The trace elements Ti, Zr, Cr, Y and Ni indicate that the dolerites are tholeiitic with slight tendency toward calc-alkaline and formed from basaltic magma in an active continental margin, while diorites are calc-alkaline and were formed by fractional crystallisation of high-alumina basaltic magma in an island arc and active continental margin tectonic environment where they probably represent the forerunner of G1 granites. The molecular ratios Mg values (MgO×100/MgO+FeO) of dolerites range from 47 to 49 while those of diorite range from 51 to 59, indicating that the dolerite and diorite have suffered mild fractionation. Mineral chemistry for the diorites shows that the amphiboles are classified as magnesiohornblende and the plagioclase composition is An39–42 (i.e. the narrow range indicate that the pluton has not suffered extensive fractional crystallisation). The Al content of amphibole displays significant variation with pressure and temperature, also the change of the Ca/(Ca+Na) ratio of plagioclase is dependent on temperature. The amphibole–plagioclase geothermobarometer suggested the P-T formation conditions of studied dykes as 2 kbar and 600 °C.  相似文献   

16.
《Applied Geochemistry》2001,16(9-10):1055-1066
Laboratory hydrothermal experiments provide unique information regarding the fate of volatile and/or incompatibles (e.g. B, Li, and As) during oceanic crust subduction. Examination of chemical redistribution between the subducted slab, mantle wedge, arc volcanics and overlying ocean water during subduction is critical to gain further insight into arc volcanism and chemical oceanic budgets. For instance, efficient mobilization of B at shallow depths may be a key aspect of its oceanic budget, and can help to explain the systematics of B-δ11B and B-10Be in arc lavas. Fluid–rock interactions at elevated temperatures and pressures in accretionary prisms were studied using a rocking autoclave hydrothermal apparatus to monitor sediment–porewater interaction over the range of 25 to 350°C, at 800 bars. Clay-rich hemi-pelagic sediments from the décollement zone of Ocean Drilling Program Site 808, Nankai Trough, were reacted with NaCl–CaCl2 solutions at water/rock ratios of ∼3.5 to 1.5 (w/w) to mimic alteration processes in the shallow subduction zone. Fluids were extracted at 25–50°C intervals and were analyzed for major and trace chemical constituents. The fluid chemistry changed significantly during the course of these experiments, but there was generally only minor modification of the solid phase; only B, Li, As, Br, and Pb are significantly depleted. During the heating cycle, dissolved Na, Mg and SO4 decreased sharply and NH4, SiO2, K, B, and Li increased at T⩾300°C. Calcium drops gradually at low temperatures, but concentrations rise sharply at T⩾300°C. Decomposition of organic matter, SO42− depletion, and Mg-fixation dominate at low temperatures; however, albitization of calcic plagioclase leads to marked Na depletions and Ca enrichments at T⩾300°C. Dissolved SiO2 remained below saturation with respect to quartz and amorphous silica throughout the entire experiment. B and Li mobilization with large isotopic fractionations occurred at low temperature. Exchangeable B (δ11B=∼15‰) is completely leached before reaching 150°C. Substantial O2 exchange between fluids and the solid phase occurred at T⩾200°C in the spiked experiment, where δ18O varies more than 100‰ in the fluids. During retrograde cooling, dissolved Mg, SO4, Ca, Si, K and Sr are released as a result of carbonate or anhydrite dissolution, and marked B re-adsorption occurred at temperatures below 60°C.  相似文献   

17.
Summary A number of small Palaeoproterozoic granitoid plutons were emplaced in the Khetri Copper Belt, which is an important Proterozoic metallogenic terrane in the northeastern part of Aravalli mountain range. Contiguous Biharipur and Dabla plutons are located about 15 km southeast of Khetri, close to a 170 km long intracontinental rift zone. The plutons are composed of amphibole-bearing alkali-feldspar granites, comprising microcline-albite granite, albite granite and late-stage microgranite. The albite granite in Biharipur is confined to the margins of the pluton, and shows extensive commingling with the synchronous mafic plutonics. Geochemically, the albite granites are characterised by low K2O (∼0.5 wt.%) and elevated Na2O (∼7.0 wt.%) abundances. By contrast, the microcline-albite granite does not show any significant mafic-granite interactions and shows normal concentrations of alkali elements. The granitoids display high concentrations of the rare earth (except Eu) and high field strength elements, high values of Ga/Al (>2.5), agpaitic index and Fe*-number. These features together with their alkaline metaluminous and ferroan nature classify the rocks as typical A-type within-plate granites. All the granitoid facies display similar REE and incompatible element profiles indicating their cogenetic nature. These granitoids were emplaced in a shallow crustal chamber under relatively low pressures, high temperature (≥850 °C) and relatively oxidising conditions. The oxidised nature, HFSE concentrations and Nd isotope data (ɛNd = −1.3 to −2.9) favour derivation of these granitoid rocks from crustal protoliths. The generation of albite granite is attributed to the replacement of alkali feldspar and plagioclase of the original granite by pure albite as a consequence of pervasive infiltration of a high Na/(Na + K) fluid at the late-magmatic stage. This model may have wider significance for the generation of albite granites/low-K granites or albitites in other areas. The A-type plutonism under consideration seems to be an outcome of ensialic rifting of the Bhilwara aulacogen.  相似文献   

18.
Margarite is both abundant and widespread throughout a sequence of interstratified amphibolite, hornblendite, and metamorphosed anorthosite from the upper Lyvia River, central Fiordland. These rock types comprise part of a metamorphosed layered intrusion. Assemblages recorded from these rocks are the product of two distinct phases of metamorphism. First generation assemblages typically comprise plagioclase (An84–96), hornblende, kyanite, and minor corundum. Clinozoisite and chlorite occur as late stage breakdown products of plagioclase and hornblende. Margarite developed during the second phase of metamorphism.Within the corundum-bearing rocks replacement of corundum or plagioclase by margarite can be observed directly. On the basis of these observations the following reaction is evident: 1 corundum+1 anorthite+1H2O=1 margarite.In other assemblages the formation of margarite can be attributed to the breakdown of kyanite and clinozoisite according to the reaction: 2 kyanite+2 clinozoisite=1 margarite+3 anorthite.Margarite is found, however, to contain appreciable amounts of paragonite solid-solution (up to 28 mol%) and plagioclase produced (second generation) is not pure anorthite but of intermediate compositions (An46–62). The reaction therefore involves the introduction of both soda and silica. Margarite also crystallized independently of clinozoisite according to a reaction of the general form: 5 pargasite+17 kyanite+19 H2O =8 margarite+4 chlorite+7 plagioclase.Application of available experimental data suggests that the margarite formed between 550 and 720 ° C up to a maximum pressure of 9.5 kb. Whereas the involvement of albite component (second generation plagioclase) will tend to lower the temperatures and pressures necessary for the occurrence of margarite, this effect is partially offset by the significant amounts of paragonite end-member held within the margarite. An independent estimate of the metamorphic conditions in metapelites suggests that the introduction of albite lowers equilibration temperatures by about 2 ° C for every 1% albite.  相似文献   

19.
Partitioning of Ca, Mn, Mg, and Fe2+ between olivine and melt has been used to examine the influence of energetically nonequivalent nonbridging oxygen in silicate melts. Partitioning experiments were conducted at ambient pressure in air and 1400°C with melts in equilibrium with forsterite-rich olivine (Fo >95 mol%). The main compositional variables of the melts were NBO/T and Na/(Na+Ca). In all melts, the main structural units were of Q4, Q3, and Q2 type with nonbridging oxygen, therefore, in the Q3 and Q2 units.For melts with high Q3/Q2-abundance ratio (corresponding to NBO/T near 1), increasing Na/(Na+Ca) [and Na/(Na+Ca+Mn+Mg+Fe2+)] results in a systematic decrease of the partition coefficients, KCaol/melt, KMnol/melt, KMgol/melt, and KFe2+ol/melt, because of ordering of the network-modifying Ca, Mn, Mg, and Fe2+ among nonbridging oxygen in Q3 and Q2 structural units. This decrease is more pronounced the smaller the ionic radius of the cation. With decreasing Q3/Q2 abundance ratio (less-polymerized melts) this effect becomes less pronounced.Activity-composition relations among network-modifying cations in silicate melts are, therefore, governed by availability of energetically nonequivalent nonbridging oxygen in individual Qn-species in the melt. As a result, any composition change that enhances abundance of highly depolymerized Qn-species will cause partition coefficients to decrease.  相似文献   

20.
《Applied Geochemistry》1999,14(2):237-254
Two major types of groundwater can be readily distinguished in the Variscian crystalline basement of the Black Forest in S–W Germany. Saline thermal water utilized in spas has its origin in 3–4 km deep reservoirs and developed its composition by 3 component mixing of surface freshwater, saltwater (of ultimately marine origin) and a water–rock reaction component. In contrast to the thermal water, CO2-rich mineral water, tapped and bottled from many wells in the Black Forest, has low salinities but a TDS distribution similar to that of thermal water. It developed its chemical composition entirely by reaction of CO2-rich water with the gneissic or granitic aquifer rock matrix. Particularly important is the contribution of various plagioclase dissolution and weathering reactions that may, at some locations, involve precipitation and dissolution of secondary calcite. Sodium/Ca ratios of water and of rock forming plagioclase in the basement rocks suggests that plagioclase weathering is strongly incongruent. Calcium is released to the water, whereas Na remains fixed to the albite feldspar component.The major element composition of 192 water samples used in this study also indicates a clear vertical stratification of the type of water chemistry; Ca–HCO3 near the surface, Na–Ca–HCO3–SO4 at intermediate depth and Na–Ca–Cl at great depth.The mean permeability of Black Forest granite is about K=10−6 m/s; it is significantly lower in gneisses (gneiss: mean K=5×10−8 m/s) leading to focused flow through granite. Highly permeable fracture and fault zones, particularly in granite, are utilized by high-TDS saline deep groundwater as ascent channels and flow paths. Although spatially closely associated, the topography driven upwelling system of saline deep water and the near-surface flow system of CO2-rich mineral waters are hydraulically and chemically unconnected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号