首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Bright and dark curvilinear structures observed between the two major chromospheric ribbons during the flare of 29 July 1973 on films from the Big Bear Solar Observatory are interpreted as a typical system of coronal loops joining the inner boundaries of the separating flare ribbons. These observations, made through a 0.25 Å H filter, only show small segments of the loops having Doppler shifts within approximately ± 22 km s–1 relative to the filter passband centered at H, H -0.5 Å or H +0.5 Å. However, from our knowledge of the typical behavior of such loop systems observed at the limb in H and at 5303 Å, it has been possible to reconstruct an appoximate model of the probable development of the loops of the 29 July flare as they would have been viewed at the limb relative to the position of a prominence which began to erupt a few minutes before the start of the flare. It is seen that the loops ascended through the space previously occupied by the filament. On the assumption that H fine structures parallel the magnetic field, we can conclude that a dramatic reorientation of the direction of the magnetic field in the corona occurred early in the flare, subsequent to the start of the eruption of the filament and prior to the time that the H loops ascended through the space previously occupied by the filament.  相似文献   

3.
We obtained a complete set of H, Ca 8542 and He I 10830 spectra and slit-jaw H images of the C5.6 limb flare of 1 August 2003 using the Multi-channel Infrared Solar Spectrograph (MISS) at Purple Mountain Observatory. This flare was also observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and partially by the Extreme-ultraviolet Imaging Telescope (EIT) on SOHO. This flare underwent a rapid rising and expanding episode in the impulsive phase. All the H, Ca 8542 and He I 10830 profiles of the flare are rather wide and the widest profiles were observed in the middle bright part of the flare instead of at the flare loop top near the flare maximum. The flare manifested obvious rotation in the flare loop and the decrease of the rotation angular speed with time at the loop-top may imply a de-twisting process of the magnetic field. The significant increases of the Doppler widths of these lines in the impulsive phase reflect quick heating of the chromosphere, and rapid rising and expanding of the flare loop. The RHESSI observations give a thermal energy spectrum for this flare, and two thermal sources and no non-thermal source are found in the reconstructed RHESSI images. This presumably indicates that the energy transfer in this flare is mainly by heat conduction. The stronger thermal source is located near the solar limb with its position unchanged in the flare process and spatially coincident with the intense EUV and H emissions. The weaker one moved during the flare process and is located in the H dark cavities. This flare may support the theory of the magnetic reconnections in the lower solar atmosphere.  相似文献   

4.
A search was made for EUV surges among the EUV flares recorded by the Harvard spectroheliometer on ATM. Out of a large set of partial observations of such flares, a subset of 24 complete events was chosen. More than 24 associated surges were found, many of them multiple events. The flare-surge correlation is therefore considerably higher in the EUV than in H, presumably because EUV surges generally appear in emission, and in high contrast compared to H. In over 70% of the cases, the surges were found to grow out of the flare structure. Making reasonable assumptions, it was possible to infer the magnitude of the gas pressure gradient from the flare core into the surge by using the EUV intensity gradient. The inferred pressure gradient appears sufficient to drive the surge, although higher resolution observations will be required to corroborate this, and rule out the importance of magnetic Lorentz force.  相似文献   

5.
6.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

7.
Jordan  Stuart  Garcia  Adriana  Bumba  Vaclav 《Solar physics》1997,173(2):359-376
A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. H flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north–south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME bubble. It is concluded that this event is probably of a mixed type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing the solar flare myth controversy in the light of this work.  相似文献   

8.
A limb, two-ribbon H flare on June 4, 1991, associated with a white-light flare and followed by an emission spray and post-flare loops, is studied. A region of rapidly enhanced brightness at the bottom of the H ribbon above the white-light flare is revealed. The energy released by the white-light flare at eff = 4100 is estimated to be about 1.5 × 1028 erg s–1.  相似文献   

9.
Simultaneous visible, EUV, and X-ray observations of magnetic structures before and during the onset of the flare of 5 September 1973 are co-registered and interpreted. Ninety minutes before the flare, intense EUV knots fluctuate near the loops which subsequently flare. The pre-flare loop is observed in O IV 554, but not in X-rays, which show instead a parallel structure which is related either to a darkening filament or the subsequent flare kernels. As the full disk X-ray emission increases, first the EUV flare loop appears, then X-ray kernels form at the feet of two EUV loops, one of which overlies the activated filament. The flaring, at any given time, is confined to a single loop (or bundle of loops) whose long axis (barely) crosses the neutral line. As time progresses, the flaring moves to other (probably higher) loops sharing the off-band H footpoints but whose axes are rotated relative to the earlier loops by angles of about 30°. Previous interpretations of single-telescope observations are revised in this joint investigation.  相似文献   

10.
We present high resolution detailed observations of the class 3N two-ribbon flare of 1973, July 29 (McMath 12461), which was associated with the disappearance of a large filament (disparition brusque). This flare occurred in a diffuse bipolar magnetic region completely devoid of sunspots, and was further associated with a type IV radio burst and a soft X-ray event. Extensive H filtergraph, spectrograph and magnetograph records during the main phase of the flare suggest that downfalling and streaming material is present on both ribbons for several hours during the H emission enhancement, but only at a small number of points located both on and off the ribbons. We find a poor spatial correspondence between bright emission knots in the H ribbons and the positions of the observed downward motion. We conclude that the model of infall-impact of Hyder (1967a, b) is not consistent with our filtergraph and spectrograph observations.Presently at the University of Michigan, Ann Arbor, Michigan.  相似文献   

11.
We scanned the H i L, Mg ii h and k, Ca ii K and H lines simultaneously with the LPSP instrument on OSO-8, to investigate the low and moderate temperature regions of an active region filament. The L line is not reversed except for the innermost position in the prominence. Intensity (k/h), (K/H) ratios are respectively 2 and 1.1, indicating that the Mg ii lines are optically thin, and that Ca ii K is saturated, although not clearly reversed. The results obtained during the second sequence of observations (K saturated before L for example) indicate that within the size of the slit (1 × 10) we are not observing the same emitting features in the different lines.We also observe an important line-of-sight velocity at the outer edge of the feature, increasing outwards from a few km s–1 to 20 km s–1 within 2. Less than half an hour later, this velocity is reduced to 15 km s–1 while the intensities increase. Full width at half maximum intensities for this component indicate turbulence variations from 22 to 30 km s–1. The observed high velocities at the top of the prominence can be compared with radial velocities that Mein (1977) observed in H at the edges of an active filament and interpreted as velocity loops slightly inclined on the axis of the filament.  相似文献   

12.
We investigate the near-ultraviolet high-resolution LWR spectra of the stars Cas, And, Tau, Gem, Cru, Boo, and Peg, obtained with the aid of the International Ultraviolet Explorer Satellite. We have given here a list of the strongest and most prevalent emission lines in the near-ultraviolet spectra of Boo, KlIIIp, and Peg, M2.5II-III which have the same luminosity class and different spectral type. The near-ultraviolet continuum flux measurements and integrated emission line fluxes of these stars for the 2500–3200 Å region are presented in order to compare the variations in the appearance of the near-ultraviolet flux distribution with the temperature structure of their chromospheres for K and M giant stars. We also discuss differences between observed and calculated fluxes found from the Planck function.  相似文献   

13.
14.
Solar flares,microflares, nanoflares,and coronal heating   总被引:2,自引:0,他引:2  
H. S. Hudson 《Solar physics》1991,133(2):357-369
Solar flare occurrence follows a power-law distribution against total flare energy W: dN/dW W with an index 1.8 as determined by several studies. This implies (a) that microflares must have a different, steeper distribution if they are energetically significant, and (b) there must be a high-energy cutoff of the observed distribution. We identify the distinct soft distribution needed for coronal heating, if such a distribution exists, with Parker's nanoflares.This paper considers a microflare to be a member of the normal X-ray burst population, with comparable physical parameters except for a smaller total energy.  相似文献   

15.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

16.
Zhang  Jun  Wang  Jingxiu 《Solar physics》2000,196(2):377-393
We analyzed simultaneous EUV images from the Transition Region And Coronal Explorer (TRACE) and H and H filtergrams from Huairou Solar Observing Station (HSOS). In active region NOAA 8307, an H C5.5 flare occurred near 06:10 UT on 23 August 1998. In this paper, we concentrated on loop–loop interaction, as well as their relationship to the C5.5 flare. We find that while opposite polarity magnetic fields cancelled each other, H bright points appeared, and then the flare occurred. Looking at EUV images, we noticed that a TRACE flare, associated with the C5.5 flare in H and H filtergrams, first appeared as patch-shaped structures, then the flare patches expanded to form bright loops. We used a new numerical technique to extrapolate the chromospheric and coronal magnetic field. Magnetic field loops, which linked flare ribbons, were found. It was suggested that loop interaction in the active region was the cause of the TRACE and H flare; the magnetic topological structures were clearly demonstrated and the TRACE flare was probably due to the interaction among energetic low-lying and other longer (higher) magnetic loops. Each primary flare kernel, seen from H, H filtergrams, and EUV images, was located near the footpoints of several interacting loops.  相似文献   

17.
The evolutional characteristics of the red asymmetry of H flare line profiles were studied by means of a quantitative analysis of H flare spectra obtained with the Domeless Solar Telescope at Hida Observatory. Red-shifted emission streaks of H line are found at the initial phase of almost all flares which occur near the disk center, and are considered to be substantial features of the red asymmetry. It is found that a downward motion in the flare chromospheric region is the cause of the red-shifted emission streak. The downward motion abruptly increases at the onset of a flare, attains its maximum velocity of about 40 to 100 km s-1 shortly before the impulsive peak of the microwave burst, and rapidly decreases before the intensity of H line reaches its maximum. Referring to the numerical simulations made by Livshits et al. (1981) and Somov et al. (1982), we conclude that the conspicuous red-asymmetry or the red-shifted emission streak of H line is due to the downward motion of the compressed chromospheric flare region produced by the impulsive heating by energetic electron beam or thermal conduction.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 258.  相似文献   

18.
D3 and H pictures of prominences were obtained with a 21-in. Lyot coronograph and a Fabry-Perot etalon used as a narrow band filter. The monochromatic images of quiescent, quasiquiescent and loop-prominences were studied. The comparison of the isophotes of quiescent and quasi-quiescent prominences in D3 with those in H shows the similarity of the prominence structure at both wavelength, although there is a strong tendency for an increase in the intensity ratio D3/H in the upper region of prominences. It seems that it is due to lower temperature in the upper regions of prominences. Probably, the relaxation processes establishing ionization equilibrium play some role. Measurements of the knot intensities of the loop-prominence show strong variations of the intensity ratio D3/H (more than one order of magnitude).  相似文献   

19.
Spectral and photoelectric (ubvy, H, H) observations of the Herbig Ae/Be star HD 259431 are reported. It is found that as its brightness fades, this star becomes bluer in the Paschen continuum and the intensity and equivalent width of the hydrogen emission lines increase. The spectral observations reveal significant variations in the intensity of the Mg II 4481 Å photospheric absorption line. A rise and fall in the luminosity by 0m.04 within a period of 5-7 minutes was recorded. Radical variations in the H lineshape ("double" "P Cyg") and flare activity are not only observed in this star, but also in a number of HAEBE stars. It is suggested that flare activity may initiate a change in the velocity gradient at the base of the wind and, thereby, induce "double P Cyg" or "P Cyg single" transitions. The nonradial pulsations of this star are also discussed.  相似文献   

20.
Some peculiarities in the behaviour of a model self-gravitating system described by hydrodynamical equations and isothermal equation of state connected with the presence of thermodynamical fluctuations in real systems were investigated in numerical experiment. The values of density and velocity , , respectively, were computed by numerical code perturbed on each time-step and in each computational cell by random values , for modeling such fluctuations. Perturbed values i = i + i ,v i = i + v i were used to initiate the next step of computations. This procedure is equivalent to an introduction into original hydrodynamical equations of Langevin sources which are random functions. It is shown that these small fluctuations (= v =0,2 =v 2 = 10–8) grow many times in marginally-stable state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号