首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the basis of bathymetric data and other geological and geophysical data obtained during the first survey conducted by Chinese Mainland in the area off eastern Taiwan Island from May to June in 2000, the morphological features of the region, the tectonic control to the seafloor topography and their tectonic implication are studied and discussed. The results have revealed that both the slope zone of the Ryukyu arc and the Ryukyu Trench present a typical morphotectonic characteristics controlled by the trench-arc system in the West Pacific Ocean. At the slope of eastern Taiwan Island the isobathic lines parallel to the coastline and distribute densely in nearly N-S direction and the slope gradient of topography is large. Such a unique feature is attributed to the collision of the Luzon arc and Eurasia continent. In the Huatung Basin, turbidity fans and submarine canyons are well developed, the formations of which are mainly related to the steep topography of the slope of the Luzon arc and the abundant s  相似文献   

2.
The Okinawa marginal basin was opened by crustal extension into the Asian continent, north of the Taiwan collision zone. It is located behind the Ryukyu Trench subduction zone and the Ryukyu active volcanic arc. If we except the Andaman Sea, the Okinawa Trough is the only example of marginal backarc basin type, opened into a continent at an early stage of evolution. Active rifting and spreading can be observed. Synthesis of siesmic reflection, seismic refraction, drilling, dredging and geological field data has resulted in interpretative geological cross sections and a structural map of the Ryukyu-Okinawa area. The main conclusions of the reconstruction of this backarc basin/volcanic arc evolution are. (1) Backarc rifting was initiated in the volcanic arc and propagated along it during the Neogene. It is still active at both ends of the basin. Remnants of volcanic arc are found on the continental side of the basin. (2) There was synchronism between opening and subsidence of the Okinawa Trough and tilting and subsidence of the forearc terrace. The late Miocene erosional surface is now 4000 m below sea-level in the forearc terrace, above the trench slope. Retreat and subsidence of the Ryukyu trench line relative to the Asian continental plate, could be one of the causes of tilting of the forearc and extension in the backarc area. (3) A major phase of crustal spreading occurred in Pliocene times 1.9 My ago in the south and central Okinawa Trough. (4) En échelon rifting and spreading structures of the central axes of the Okinawa Trough are oblique to the general trend of the arc and trench. The Ryukyu arc sub-plate cannot be considered as a rigid plate. Rotation of 45° to 50° of the southern Ryukyu arc, since the late Miocene, is inferred. The timing and kinematic evolution of the Taiwan collision and the south Okinawa Trough opening suggest a connection between these two events. The indentation process due to the collision of the north Luzon Arc with the China margin could have provoked: lateral extrusion; clockwise rotation (45° to 50° according to palaeomagnetic data) and buckling of the south Ryukyu non-volcanic arc; tension in the weak crustal zone constituted by the south Ryukyu volcanic arc and opening of the south Okinawa Trough. Similar lateral extrusions, rotations, buckling and tensional gaps have been observed in indentation experiments. Additional phenomena such as: thermal convection, retreating trench model or anchored slab model could maintain extension in the backarc basin. Such a hypothetical collision-lateral backarc opening model could explain the initiation of opening of backarc basins such as the Mariana Trough, Bonin Trough, Parece Vela — Shikoku Basin and Sea of Japan. A new late Cenozoic palaeogeographic evolution model of the Philippine Sea plate and surrounding areas is proposed.  相似文献   

3.
The Gagua Ridge, carried by the Philippine Sea Plate, is subducting obliquely beneath the southernmost Ryukyu Margin. Bathymetric swath-mapping, performed during the ACT survey (Active Collision in Taiwan), indicates that, due to the high obliquity of plate convergence, slip partitioning occurs within the Ryukyu accretionary wedge. A transcurrent fault, trending N95° E, is observed at the rear of the accretionary wedge. Evidence of right lateral motion along this shear zone, called the Yaeyama Fault, suggests that it accommodates part of the lateral component of the oblique convergence. The subduction of the ridge disturbs this tectonic setting and significantly deforms the Ryukyu Margin. The ridge strongly indents the front of the accretionary wedge and uplifts part of the forearc basin. In the frontal part of the margin, directly in the axis of the ridge, localized transpressive and transtensional structures can be observed superimposed on the uplifted accretionary complex. As shown by sandbox experiments, these N330° E to N30° E trending fractures result from the increasing compressional stress induced by the subduction of the ridge. Analog experiments have also shown that the reentrant associated with oblique ridge subduction exhibits a specific shape that can be correlated with the relative plate motion azimuth.These data, together with the study of the margin deformation, the uplift of the forearc basin and geodetic data, show that the subduction of the Gagua Ridge beneath the accretionary wedge occurs along an azimuth which is about 20° less oblique than the convergence between the PSP and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear of the accretionary wedge, convergence between the ridge and the overriding accretionary wedge appears to be close to N345° E and thus, occurs at a rate close to 9 cm yr–1. As a result, we estimate that a motion of 3.7 cm yr–1±0.7 cm should be absorbed along the transcurrent fault. Based on these assumptions, the plate tectonic reconstruction reveals that the subducted segment of the Gagua Ridge, associated with the observable margin deformations, could have started subducting less than 1 m.y. ago.  相似文献   

4.
基于2000年5~6月在台湾岛以东海域调查获得的多波束全覆盖测深等地质和地球物理资料,对该海域海底地形特征进行了研究,探讨了构造对海底地形的控制作用及其构造地质意义.研究表明,琉球岛弧岛坡区和琉球海沟表现为典型的西太平洋沟-弧-盆体系控制下的构造地形;台湾岛东部岛坡等深线近南北向平行密集排列,地形坡度大,弧陆碰撞造就了该区独特的地形特征;花东盆地海底峡谷发育,其形成主要受基底起伏和走滑断裂的控制;加瓜海脊东西两侧水深和地形特征明显不同,但其基底可能属于花东盆地,加瓜海脊的东侧对应了两个不同性质板块的边界;西菲律宾海盆表现为北西向线状脊-槽相间排列,并遭受北东向转换断层的切割,根据海底地形、转换断层和磁异常条带的方向推测,研究区海底形成于距今60~45Ma的西菲律宾海盆北东-南西向扩张期.  相似文献   

5.
南冲绳海槽岩石圈构造动力作用机制探讨   总被引:8,自引:1,他引:8  
由最新获得的重磁、地震和多波束地形数据 ,结合多尺度的地幔流动力分析 ,展示了南冲绳海槽岩石圈构造动力的多样性特征和其内在的联系。从上新世开始的三幕张性断陷活动是在以前的压性断裂构造的基础上发展起来的 ,向岛弧侧迁移 ,岩浆、火山活动主要集中在正断层与平移断层的交汇处。深部动力源可归结为上地幔对流产生的菲律宾海板块俯冲 ,引起岛弧岩石圈挤压褶皱而向海沟旋张掀斜 ,产生弧后岩石圈的张性构造 ;进一步引起弧后软流圈挤压隆起 ,岩石圈与软流圈耦合作用导致海槽断陷张裂、岩浆活动。冲绳海槽仍是一个软流圈在汇聚的弧后盆地。全球性左旋压扭滑移背景 ,琉球海沟南段俯冲受阻小、强度大 ,台湾—吕宋的北向挤压 ,使海槽表现为剪张性 ,由平移断层调控使张性断裂左旋雁行排列 ,整个海槽张性构造由北往南推进 ,张应力方向由NW过渡到NNW。  相似文献   

6.
Faulting, magmatism and crustal oceanization of the Okinawa Trough   总被引:1,自引:1,他引:0  
The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them.En-echelon grabens are ranked oblique to the continental shelf edge uplift,and the Longwang uplift,the rifting block ridge in the northern segment and the“Mianhua uplift”in the southern segment have possibly preserved characteristics of volcanism and magmatism occurring with those rifting phases.The clockwise rotation of the southern Ryukyu Islands,driven by collision between Luzonand Taiwan,has played a key role in the crustal oceanization,enhancing the crustal extension of the southern segment and inducing volcanic magmatism in those grabens,among which the Yaeyama graben is a typical example of the presence of oceanic crust.Faulting and magmatism were mainly migrating towards the island are asymmetrically.The crustal oceanization of the Okinawa Trough is difficultly interpreted by the linear magnetic anomaly model,which is fit for the symmetric spreading of the mid-oceanic ridges.  相似文献   

7.
冲绳海槽断裂、岩浆构造活动和洋壳化进程   总被引:3,自引:1,他引:2  
讨论了冲绳海槽断裂、岩浆构造活动特征和它们之间的关系,认为雁行排列的地堑斜交于陆架外缘隆起带,海槽北段断块隆脊、龙王构造带和海槽南段"棉花构造带"可能保留了海槽各幕断陷前的火山岩浆活动特征,而现在活动的吐噶喇火山岛弧可沿海槽南段岛坡追踪到台湾。吕宋岛向台湾的碰撞挤压引起的旋张活动加强了海槽南段的地壳拉张,诱发了地堑内火山岩浆活动,在洋壳化进程中起关键作用,其中最典型的八重山地堑已经形成洋壳。断裂和岩浆活动主要是单向地向岛弧侧迁移,由洋中脊扩张产生的对称条带状磁异常模式难以解释冲绳海槽的洋壳化进程。  相似文献   

8.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

9.
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc–Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources(input) and arc or back-arc magmas(output) in the Philippine Sea Plate–Ryukyu Arc–Okinawa Trough system(PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Okinawa Trough lavas: sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt(MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and subcontinental lithospheric mantle(SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the "seafloor spreading" process in the southwest segment, "rift propagation" process in the middle segment, and "crustal extension" process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.  相似文献   

10.
台湾增生楔的构造单元划分及其变形特征   总被引:6,自引:0,他引:6  
台湾增生楔位于欧亚板块、菲律宾海微板块和南海的结合部位,是现代弧陆碰撞研究的理想场所。通过对南海973航次在该区域的多道地震剖面的解释,对该增生楔进行了构造单元的划分,并分析了变形特征。认为台湾增生楔是由3个部分,即弧陆碰撞产生的增生部分、洋内俯冲产生的增生部分和增生楔后端在恒春海脊和北吕宋海槽之间的构造楔组成,研究区的高屏斜坡、恒春海脊和北吕宋海槽西端变形带分别是3个部分的反映。自中中新世以来,南海洋壳开始沿着马尼拉海沟向菲律宾海微板块俯冲,形成增生楔中洋内俯冲增生部分;与此同时菲律宾海微板块开始向NW方向移动,前缘的吕宋岛弧自6.5Ma B.P以来与亚洲陆缘斜向碰撞,形成增生楔中弧陆碰撞增生部分。碰撞首先发生在台湾岛的北部,由于弧陆强烈的挤压作用,增生楔后端部分向北吕宋海槽倒冲楔人,使得上部的北吕宋海槽的沉积发生隆升变形。滨海的各个地貌单元可以和台湾陆上的地貌单元相联系,它们具有相似的地质特征,但是由于陆上部分增生历史久,不仅抬升为陆,而且地层的年代也更老。  相似文献   

11.
冲绳海槽现代张裂的地球物理特征   总被引:3,自引:0,他引:3  
位于东海陆架与琉球岛弧之间的冲绳海槽为板块俯冲作用形成的弧后断陷盆地,具有独特的构造地貌特征。自中新世末以来历经了4个强烈拉张的演化时期,目前已达到张裂的高级阶段。地球物理资料显示,海槽中的现代拉张作用仍在进行,表现在海槽轴部快速沉降形成地堑槽,对称分布的张性断裂,晚更新世—全新世以来的岩浆活动,从老至新排列的磁异常务带以及高地热流、频繁的地震活动等,充分体现了冲绳海槽的现代扩张特点。  相似文献   

12.
台湾岛及其邻域地层和构造特征   总被引:1,自引:0,他引:1  
台湾碰撞造山带作为世界上最年青的造山带之一,具有其独特的地质环境。它位于菲律宾海板块和亚欧板块的交汇处,东北面为东北-近东西走向的琉球沟-弧-盆系,东侧为西北向运动的菲律宾海板块,向南为近南北走向的吕宋岛弧,并与冲绳海槽和马尼拉海沟的形成演化密切相关,从而造就了众多形态复杂、成因各异的区域地层和构造现象。台湾岛自东向西可划分为海岸山脉带、台东纵谷、中央山脉、西部山麓带和沿海平原带五个构造-沉积单元。以台东纵谷为界,两侧在地形地貌、地层组成、岩石性质、重力、磁力等地质地球物理特征上均表现为明显不同,分别隶属于不同的板块构造单元,西侧属于欧亚板块的中国大陆边缘,东侧的海岸山脉带则是北吕宋火山岛弧的向北延伸。  相似文献   

13.
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting.  相似文献   

14.
Formation and tectonic evolution of outer marginupfold zone of East China Sea ShelfTXFormationandtectonicevolutionofoutermargi...  相似文献   

15.
Recent multibeam bathymetric and geophysical data recorded in the West Philippine Basin, east of Taiwan, reveal new information on the structure and the tectonic origin of the oceanic Gagua Ridge. This linear, 300 km-long, 4 km-high, north-south-trending ridge, is being subducted beneath the Ryukyu Trench along 123° E. This basement high separates two basins of different ages. Its summit is marked by two crests and an axial valley. A map of the basement top shows the region of the ridge to be composed of a set of linear and parallel ridges and troughs. All these elements suggest that the development of the ridge, and its surroundings, has been influenced by strike-slip deformation. Nevertheless, the height of the ridge indicates also an important compressive component in the deformation. Gravity models across the ridge show local compensation with a crustal root, indicating that an overthickening of the crust occurred when it was young and thus more easily deformable. This idea is strengthened with flexural modeling of the lithosphere that bends under the load of the ridge, indeed it indicates that the high probably formed when the underlying lithosphere was young. We interpret the Gagua Ridge as a fracture zone transverse ridge uplifted during a transpressive episode along a north-south -trending fracture zone in the middle Eocene time, if we accept Hilde and Lee's (1984) model of magnetic lineations. This tectonic event could be contemporaneous with a change of the pole of rotation of the West Philippine Basin which occurred about 43/45 Ma ago.  相似文献   

16.
Bathymetry of the Tonga Trench and Forearc: a map series   总被引:1,自引:0,他引:1  
Four new bathymetric maps of the Tonga Trench and forearc between 14 °S and 27 °S display the important morphologic and structural features of this dynamic convergent margin. The maps document a number of important geologic features of the margin. Major normal faults and fault lineaments on the Tonga platform can be traced along and across the upper trench slope. Numerous submarine canyons incised in the landward slope of the trench mark the pathways of sediment transport from the platform to mid- and lower-slope basins. Discontinuities in the trench axis and changes in the morphology of the landward slope can be clearly documented and may be associated with the passage and subduction of the Louisville Ridge and other structures on the subducting Pacific Plate. Changes in the morphology of the forearc as convergence changes from normal in the south to highly-oblique in the north are clearly documented. The bathymetric compilations, gridded at 500- and 200-m resolutions and extending along 500 km of the landward trench slope and axis, provide complete coverage of the outer forearc from the latitude of the Louisville Ridge-Tonga Trench collision to the northern terminus of the Tonga Ridge. These maps should serve as a valuable reference for other sea-going programs in the region, particularly the Ocean Drilling Program (ODP) and the National Science Foundation MARGINS initiative.  相似文献   

17.
Morphology and tectonics of the Yap Trench   总被引:5,自引:0,他引:5  
We conducted swath bathymetry and gravity surveys the whole-length of the Yap Trench, lying on the southeastern boundary of the Philippine Sea Plate. These surveys provided a detailed morphology and substantial insight into the tectonics of this area subsequent the Caroline Ridge colliding with this trench. Horst and graben structures and other indications of normal faulting were observed in the sea-ward trench seafloor, suggesting bending of the subducting oceanic plate. Major two slope breaks were commonly observed in the arc-ward trench slope. The origin of these slope breaks is thought to be thrust faults and lithological boundaries. No flat lying layered sediments were found in the trench axis. These morphological characteristics suggest that the trench is tectonically active and that subduction is presently occurring. Negative peaks of Bouguer anomalies were observed over the arc-ward trench slope. This indicates that the crust is thickest beneath the arc-ward trench slope because the crustal layers on the convergent two plates overlap. Bouguer gravity anomalies over the northern portion of the Yap Arc are positive. These gravity signals show that the Yap Arc is uplifted by dynamic force, even though dense crustal layers underlie the arc. This overlying high density arc possibly forces the trench to have great water depths of nearly 9000 m. We propose a tectonic evolution of the trench. Subduction along the Yap Trench has continued with very slow rates of convergence, although the cessation of volcanism at the Yap Arc was contemporaneous with collision of the Caroline Ridge. The Yap Trench migrated westward with respect to the Philippine Sea Plate after collision, then consumption of the volcanic arc crust occurred, caused by tectonic erosion, and the distance between the arc and the trench consequently narrowed. Lower crustal sections of the Philippine Sea Plate were exposed on the arc-ward trench slope by overthrusting. Intense shearing caused deformation of the accumulated rocks, resulting in their metamorphism in the Yap Arc.  相似文献   

18.
Fault patterns at outer trench walls   总被引:1,自引:0,他引:1  
Profiles across subduction-related trenches commonly show normal faulting of the outer trench wall. Such faulting is generally parallel or sub-parallel to the trench and is ascribed to tension in the upper part of the oceanic plate as it is bent into the subduction zone. A number of authors have noted that outer trench wall faulting may involve re-activation of the oceanic spreading fabric of the subducting plate, even when the trend of this fabric is noticeably oblique to the extensional stress direction. However, one previous review of outer trench wall fault patterns questioned the occurrence of a consistent link between fault orientation and such controlling factors. This latter study predated the widespread availability of swath bathymetry and longrange sidescan sonar data over trenches. Based only on profile data, it was unable to analyse fault patterns with the accuracy now possible. This paper therefore re-examines the relationship between outer trench wall faulting and the structure of the subduction zone and subducting plate using GLORIA and Seabeam swath mapping data from several locations around the Pacific and Indian Oceans. The principal conclusions is that the trend of outer trench wall faults is almost always controlled by either the subducting slab strike or by the inherited oceanic spreading fabric in the subducting plate. The latter control operates when the spreading fabric is oblique to the subducting slab strike by less than 25–30°; in all other cases the faults are parallel to slab strike (and parallel or sub-parallel to the trench). Where the angle between spreading fabric and slab strike is close to 30°, two fault trends may coexist; evidence from the Aleutian Trench indicates a gradual change from spreading fabric to slab strike control of fault trend as the angle between the two increases from 25 to 30°. The only observed exception to the above rule of fault control comes from the western Aleutian Trench, where outer trench wall faults are oblique to the slab strike, almost perpendicular to the spreading fabric, and parallel to the convergence direction. Re-orientation of the extensional stress direction due to right-lateral shear at this highly oblique plate boundary is the best explanation of this apparently anomalous observation.  相似文献   

19.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

20.
Faults on the outer wall of the northern Peru—Chile trench, seaward of the Lima Basin, Arica Bight, and Iquique Basin, parallel the trend of Nazca plate magnetic anomalies. Where the Nazca Ridge enters the subduction zone, faulting parallels the trench, probably reflecting a lack of spreading fabric on the ridge. Seaward of the Yaquina Basin, faulting does not parallel the trench or the spreading fabric, possibly reflecting stress changes caused by N—S extension across the nearby Mendaña fracture zone. These results generally agree with a previous review of subduction-related faulting, which concluded that faults parallel the spreading fabric where it differs from the strike of the dipping slab by less than 30°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号