首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Integration of new mineral chemical, geochronological and structural data from the Texel Complex yielded information on (re)crystallization and deformation processes in metapelites, eclogites and tonalitic orthogneisses during eclogite facies metamorphism. Maximum PT conditions reached 1.2 to 1.4 GPa and 540–620 °C in the Upper Cretaceous. In tonalitic orthogneisses and metapelites, substantial garnet growth took place prior to eclogite facies metamorphism and Sm–Nd data indicate the presence of pre-Cretaceous mineral relics. In contrast, complex garnet-growth and -resorption processes are inferred for eclogites, which produced characteristic atoll microstructures and occurred close to the pressure peak of a single, coherent high pressure event. Garnet Sm–Nd data indicate eclogite facies crystallization at 85 ± 5 Ma. While eclogites retained information on the maximum burial stage, matrix phases in metapelites and orthogneisses were intensely recrystallized during the amphibolite facies metamorphic decompression. All the meso- and macro-scale deformation structures formed during the high pressure event and subsequent exhumation. The major mylonitic foliation is represented by the high pressure phases but was refolded during amphibolite facies exhumation. A biotite-whole-rock Rb–Sr age of 70–80 Ma indicates that cooling below about 300 °C occurred in the Upper Cretaceous. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

2.
High-pressure metamorphism in the Pohorje Mountains of Slovenia (Austroalpine unit, Eastern Alps) affected N-MORB type metabasic and metapelitic lithologies. Thermodynamic calculations and equilibrium phase diagrams of kyanite–phengite-bearing eclogites reveal PT conditions of >2.1 GPa at T<750°C, but within the stability field of quartz. Metapelitic eclogite country rocks contain the assemblage garnet + phengite + kyanite + quartz, for which calculated peak pressure conditions are in good agreement with results obtained from eclogite samples. The eclogites contain a single population of spherical zircon with a low Th/U ratio. Combined constraints on the age of metamorphism come from U/Pb zircon as well as garnet–whole rock and mineral–mineral Sm-Nd analyses from eclogites. A coherent cluster of single zircon analyses yields a 206Pb/238U age of 90.7±1.0 Ma that is in good agreement with results from Sm-Nd garnet–whole rock regression of 90.7±3.9 and 90.1±2.0 Ma (εNd: +8) for two eclogite samples. The agreement between U-Pb and Sm-Nd age data strongly suggests an age of approximately 90 Ma for the pressure peak of the eclogites in the Pohorje Mountains. The presence of garnet, omphacite and quartz inclusions in unfractured zircon indicates high-pressure rather than ultrahigh pressure conditions. The analysed metapelite sample yields a Sm-Nd garnet–whole rock scatterchron age of 97±15 Ma. These data probably support a single P-T loop for mafic and pelitic lithologies of the Pohorje area and a late Cretaceous high-pressure event that affected the entire easternmost Austroalpine basement including the Koralpe and Saualpe eclogite type locality in the course of the complex collision of the Apulian microplate and Europe.  相似文献   

3.
Summary Retrograde eclogites and serpentinites from the Hochgr?ssen massif, Styria, are parts of the Speik complex in the Austroalpine basement nappes of the Eastern Alps. They are in tectonic contact with pre-Alpine gneisses, amphibolites, and Permo-Triassic quartz phyllites (Rannach Series). The eclogites are derived from ocean-floor basalts with affinities to mid-ocean ridge and back-arc basin basalts. Fresh eclogites are rare and contain omphacite with a maximum of 39 mol% jadeite content, garnet (Py15–19) and amphibole. Retrograde eclogites consist of amphibole and symplectites of Na-poor clinopyroxene (5–8 mol% Jd) + albite ± amphibole. Amphiboles are classified as edenite, pargasite, tschermakite, magnesiohornblende and actinolite. In relatively fresh eclogite, edenite is a common amphibole and texturally coexists with omphacite and garnet. An average temperature of 700 °C was obtained for eclogite facies metamorphism using garnet-pyroxene thermometry. A minimum pressure of 1.5 GPa is indicated by the maximum jadeite content in omphacite. Thermobarometric calculations using the TWEEQ program for amphibole in textural equilibrium with omphacite and garnet give pressures of 1.8–2.2 GPa at 700 °C. The equilibrium assemblage of Na-poor clinopyroxene, albite, amphibole and zoisite in the symplectites gives a pressure of about 0.6–0.8 GPa at 590–640 °C. 40Ar/39Ar radiometric dating of edenitic amphibole in textural equilibrium with omphacite gave a plateau age of 397.3 ± 7.8 Ma, and probably indicates retrograde cooling through the closure temperature for amphibole (∼500 °C). The age of the high-pressure metamorphism thus must be pre-Variscan and points to one of the earliest metamorphic events in the Austroalpine nappes known to date. Received June 11, 2000; revised version accepted January 2, 2001  相似文献   

4.
Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran   总被引:1,自引:0,他引:1  
Summary Metabasic rocks were recently found within a ductile shear zone in the north of Shahrekord, being a part of the structural zone of Sanandaj-Sirjan, SW Iran. The rocks give evidence of a so far unrecognized eclogite facies metamorphic event and testify to high pressure metamorphism in the Sanandaj-Sirjan Zone, near the Main Zagros Reverse Fault, which is the assumed suture zone between the Arabian plate and the Iranian block. The eclogites occur as lenses or blocks within ortho- and paragneisses. The petrographic features and reaction textures display at least two main metamorphic stages: (1) a peak eclogite facies stage, and (2) a subsequent amphibolite facies stage. The eclogite facies metamorphism is indicated by omphacite + garnet + sodic-calcic amphiboles (barroisite, magnesiokatophorite and magnesiotaramite) + phengite + rutile + (clino-)zoisite + quartz ± dolomite. The garnets are mainly almandine-rich, which fits with the C-type eclogite classification. Calcic amphiboles (hornblende, tschermakite and pargasite) + plagioclase are secondary phases formed during the retrograde amphibolite-facies metamorphism. P-T estimates for the eclogite facies give pressures of 21–24 kbar and temperatures of 590–630 °C (geothermometry) and 470–520 °C (THERMOCALC), respectively. Geothermobarometry for the amphibolite-facies metamorphism yields 10–11 kbar and 650–700 °C. Author’s address: Ali Reza Davoudian, Department of Natural Resources, Shahrekord University, Shahrekord, Iran  相似文献   

5.
Metabasites with eclogite facies relics occur in northern Sardinia as massive to strongly foliated lenses or boudins embedded within low- to medium-grade rocks (Anglona) and migmatites (NE Sardinia). U–Pb zircon dating yielded 453 ± 14, 457 ± 2 and 460 ± 5 Ma as the protolith ages; 400 ± 10 and 403 ± 4 Ma have been interpreted as the ages of the HP event and 352 ± 3 and 327 ± 7 Ma as the ages of the main Variscan retrograde events. A pre-eclogite stage is documented by the occurrence of tschermakite, zoisite relics within garnet porphyroblasts (Punta de li Tulchi) and an edenite–andesine inclusion within a relict kyanite porphyroblast (Golfo Aranci). Four main metamorphic stages have been distinguished in the eclogite evolution: (1) eclogite stage, revealed by the occurrence of armoured omphacite relics within garnet porphyroblasts. The Golfo Aranci eclogites also include kyanite, Mg-rich garnet and pargasite; (2) granulite stage, producing orthopyroxene and clinopyroxene–plagioclase symplectites replacing omphacite. At Golfo Aranci, the symplectitic rims around relict kyanite consist of sapphirine, anorthite, corundum and spinel; (3) amphibolite stage, leading to the formation of amphibole–plagioclase kelyphites between garnet porphyroblasts and pyroxene–plagioclase symplectites and to the growth of cummingtonite on orthopyroxene. Tschermakite to Mg-hornblende, plagioclase, cummingtonite, ilmenite, titanite and biotite are coexisting phases; (4) greenschist to sub-greenschist stage, defined by the appearance of actinolite, chlorite, epidote ss, titanite, sericite and prehnite. The following PT ranges have been estimated for the different stages. Eclogite stage 550–700°C; 1.3–1.7 GPa; granulite stage 650–900°C; 0.8–1.2 GPa, clustering in the range 1.0–1.2 GPa; amphibolite stage 550–740°C; 0.3–0.7 GPa; greenschist stage 300–400°C; 0.2–0.3 GPa. Comparable ranges characterise the other Variscan massifs in Europe; eclogite stage: T = 530–800°C; P from 0.7–1.1 to 1.7 ± 0.3 GPa; granulite stage T = 760–870°C and P from 1.1–1.4 to 7.2–9.9 GPa, clustering around 1.0–1.2 GPa. Whole-rock chemistry: Sardinian eclogites are N- to T-MORB; European ones N- to E-MORB or calc-alkaline.  相似文献   

6.
 The Sesia-Lanzo Zone is a polymetamorphic unit containing Hercynian granulite relics overprinted by eclogite and greenschist facies metamorphism and deformation during the Alpine orogeny. Different parts of the unit record different stages on the P-T-deformation evolution, allowing multi-system isotopic studies to unravel the precise timing of the metamorphic history. New Rb–Sr white mica and U–Pb sphene data constrain the age of eclogite facies metamorphism and deformation to 60–70 Ma. This substantially alters the common view of early- to mid-Cretaceous eclogite facies metamorphism in this unit. The new results are more consistent with the established geotectonic framework for the Alpine orogeny, since they do not require a prolonged period of depressed geothermal gradient at a time when the region was in extension. It is also more concordant with recent studies of other units that demonstrate post-Cretaceous high-pressure metamorphism. Step-heated 40Ar–39Ar analysis of phengites yields good plateaux giving ages older than the corresponding Rb–Sr age. Such anomalously high ages indicate the presence of radiogenic argon-rich fluids in the grain boundary network under the fluid/pressure conditions acting during this high-pressure metamorphic event. The U–Pb sphene ages are variable in polymetamorphic rocks, and show inheritance of older Pb or sphene crystals into the high-pressure event. Two monometamorphic assemblages yield concordant ages at 66±1 Ma, reflecting crystallisation of the eclogite facies assemblage. The Gneiss Minuti Complex (GMC) lies structurally below the Eclogitic Micaschists, and its pervasive greenschist facies fabric yields tightly clustered Rb–Sr white mica ages at 38–39 Ma. This greenschist event did not affect the majority of the EMC. The 40Ar–39Ar ages of micas formed at this time were very disturbed, whereas micas surviving from an earlier higher pressure assemblage had their 40Ar–39Ar system reset. The greenschist event did not strongly affect U–Pb systematics in Hercynian age sphenes, suggesting that the GMC did not uniformly suffer an eclogite facies metamorphism during the Alpine cycle, but was juxtaposed against the EMC later in the orogeny. This model still requires that the locus of deformation and metamorphism (and possibly fluid flux) moved outboard with time, leaving the Sesia-Lanzo basement as a shear-bounded unreactive block within the orogenic wedge. Received: 12 October 1995/Accepted:25 June 1996  相似文献   

7.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

8.
ABSTRACT

Field and petrologic characteristics of two new eclogite localities within the Guatemala Suture Complex (GSC) north of the Motagua Fault are presented. The Tuncaj Hill locality exposes a coherent body of retrogressed eclogite hundreds of metres long that is associated with serpentinite of the North Motagua Unit. The Tanilar River locality exposes numerous bands and lenses of eclogite hosted in sialic gneisses of the Chuacús Complex. The Tuncaj eclogite has a two-stage prograde evolution containing the peak assemblage Grt + Omp + Ttn + Czo + Zo ± Am, formed at temperatures <720°C. In contrast, eclogites of the Tanilar unit are characterized by the paragenesis Omp + Grt + Rt ± Phg ± Qtz ± Ep giving higher peak conditions of T = 720–830°C and P = 2.1–2.7 GPa, near the stability field of coesite. Previously obtained data and our thermobaric calculations suggest distinct petrotectonic evolutions for the various types of eclogites within the suture. The lawsonite eclogites south of the Motagua Fault were probably produced in a mature Farallon subduction zone during the Early Cretaceous. The northern high-pressure (HP) blocks in serpentinite mélange and coherent amphibolite bodies with eclogite relics were generated by the Early Cretaceous subduction of the proto-Caribbean lithosphere under the Great Caribbean Arc. A continental block, the North American passive margin, reached the arc’s trench in the Campanian and was subducted to ca. 80 km depth, producing the eclogites of the Chuacús Complex. As the slab was delaminated and partially exhumed, the continental Chuacús became tectonically juxtaposed with HP blocks of the proto-Caribbean that had been accreted to the Caribbean plate forming the North Motagua Unit. The juxtaposed group migrated to mid-crustal level and was contemporaneously retrogressed under epidote-amphibolite facies conditions.  相似文献   

9.
滇西勐库地区退变质榴辉岩锆石U-Pb年龄及其地质意义   总被引:4,自引:1,他引:3  
滇西双江县勐库地区退变质榴辉岩呈构造透镜体产于湾河蛇绿混杂岩带内,该发现弥补了东特提斯造山带高压-超高压变质岩在云南境内的空缺。在岩石学观察的基础上,借助激光剥蚀等离子体质谱(LA-ICP-MS)技术,对退变质榴辉岩中的锆石开展了精确的U-Pb年龄测定。所测试的3件样品分别采自3个不同的露头:样品PM011-9-1采自勐库控角剖面,样品PM038-15-4采自勐库地界剖面,样品GH1612-1-1采自勐库根恨大寨。测年结果显示,样品PM011-9-1的23个测点中存在2组较集中的~(206)Pb/~(238)U年龄,分别为801.0±9.8Ma和227.0±12Ma;样品PM038-15-4的26个测点中存在2组较集中的~(206)Pb/~(238)U年龄,分别为447.5±3.6Ma和291.7±6.3Ma;样品GH1612-1-1的30个测点中存在一组较集中的~(206)Pb/~(238)U年龄,为229.0±1.3Ma。结合区域资料及锆石阴极发光图像分析,801.0±9.8Ma应属退变质榴辉岩的原岩年龄,可能代表了Rodinia超大陆裂解早期出现的初始洋壳;而447.5±3.6Ma、291.7±6.3Ma和229.0±1.3~227.0±12Ma这3组年龄可能代表了退变质榴辉岩经历的3期变质作用年龄:分别为峰期硬柱石榴辉岩相的变质作用;中期角闪石榴辉岩相-高压麻粒岩相的退变质作用,为一个降压-增温的"热折返"过程;主期角闪岩相的退变质作用,是一个大幅度的降温-减压过程,奠定了勐库地区退变质榴辉岩的主体面貌。  相似文献   

10.
Trace element distribution in Central Dabie eclogites   总被引:16,自引:0,他引:16  
Coesite-bearing eclogites from Dabieshan (central China) have been studied by ion microprobe to provide information on trace element distributions in meta-basaltic mineral assemblages during high-pressure metamorphism. The primary mineralogy (eclogite facies) appears to have been garnet and omphacite, usually with coesite, phengite and dolomite, together with high-alumina titanite or rutile, or both titanite and rutile; kyanite also occurs occasionally as an apparently primary phase. It is probable that there was some development of quartz, epidote and apatite whilst the rock remained in the eclogite facies. A later amphibolite facies overprint led to partial replacement of some minerals and particularly symplectitic development after omphacite. They vary from very fine-grained dusty-looking to coarser grained Am + Di + Pl symplectites. The eclogite facies minerals show consistent trace element compositions and partition coefficients indicative of mutual equilibrium. Titanite, epidote and apatite all show high concentrations of REE relative to clinopyroxene. The compositions of secondary (amphibolite facies) minerals are clearly controlled by local rather than whole-rock equilibrium, with the composition of amphibole in particular depending on whether it is replacing clinopyroxene or garnet. REE partition coefficients for Cpx/Grt show a dependence on the Ca content of the host phases, with D REE Cpx/Grt decreasing with decreasing D Ca . This behaviour is very similar to that seen in mantle eclogites, despite differences in estimated temperatures of formation of 650–850 °C (Dabieshan) and 1000–1200 °C (mantle eclogites). With the exception of HREE in garnet, trace elements in the eclogites are strongly distributed in favour of minor or accessory phases. In particular, titanite and rutile strongly concentrate Nb and Zr, whilst LREE–MREE go largely into epidote, titanite and apatite. If these minor/accessory minerals behave in a refractory manner during melting or fluid mobilisation events and do not contribute to the melt/fluid, then the resultant melts and fluids will be strongly depleted in LREE–MREE. Received: 11 February 1999 / Accepted: 31 January 2000  相似文献   

11.
Gabbro and eclogite boudins are preserved within the amphibolites of the composite para- and ortho-gneiss Variscan basement of the Savona Crystalline Massif (Ligurian Briançonnais, Italy). Whole rock trace element patterns, low initial εNd (+5.4 to +8.8) data and trace element analyses on relict igneous clinopyroxene revealed that the mafic rocks were derived from depleted mantle melts, which most likely underwent crustal contamination during emplacement. Gabbros have a cumulus origin controlled by clinopyroxene and plagioclase segregation, whereas the eclogites represent evolved melts. U-Pb and trace element micro-analyses on zircons separated from one amphibolitised gabbro and one eclogite help to constrain coeval ages at ~468 Ma for their igneous protoliths. The occurrence of a few inherited zircons confirms the involvement of a crustal component in the petrogenesis of the mafic rocks. In the eclogite, concordant zircon ages younger than the protolith age testify to metamorphic re-crystallisation (or new growth) from about 420 to 305 Ma. Zircon textures and trace element compositions indicate that eclogite facies metamorphism occurred 392–376 Ma ago. The younger zircon portions yielding a mean Concordia age of 333 ± 7 Ma are related to equilibration or new growth during the post-eclogite, amphibolite-facies equilibration.  相似文献   

12.
The main hole (MH) of the Chinese Continental Scientific Drilling Project (CCSD) in southern Sulu has penetrated into an ultrahigh-pressure (UHP) metamorphic rock slice which consists of orthogneiss, paragneiss, eclogite, ultramafic rock and minor schist. Recovered eclogites have a UHP metamorphic mineral assemblage of garnet + omphacite + rutile ± phengite ± kyanite ± coesite ± epidote. Ultramafic rocks contain garnet + olivine + clinopyroxene + orthopyroxene ± Ti-clinohumite ± phlogopite. Gneisses and schists contain an amphibolite-facies paragenesis, but their zircons have coesite, garnet, omphacite (or jadeite) and phengite inclusions, indicating that eclogites and gneisses have been subjected to in situ UHP metamorphism. Using available geothermobarometers, P–T estimates of 3.1–4.4 GPa and 678–816°C for eclogites were obtained. If surface outcrops and neighboring shallow drill holes are considered together, we suggest that a huge supracrustal rock slab (> 50 km long × 100 km wide × 5 km deep) was subducted to a depth > 100 km and then exhumed to the surface. The depth interval (0–2,050 m) of the CCSD-MH can be divided into six lithological units. Unit 1 consists of alternating layers of quartz-rich and rutile-rich eclogites, with thin interlayers of gneiss and schist. Eclogites of unit 1 are characterized by Nb, Ta, Sr and Ti depletions, low Mg number and general LREE enrichment. Unit 2 comprises rutile- and ilmenite-rich eclogite and minor “normal” eclogite and is characterized by high TiO2, total Fe, V, Co and Sr, and very low SiO2, alkali, Zr, Ba, Nb, Ta and total REE contents, and LREE-depleted REE patterns with slightly positive Eu anomalies. Unit 3 contains ultramafic rock and minor MgO-rich eclogite. Protoliths of UHP rocks from units 1, 2 and 3 represent a layered mafic to ultramafic intrusion at crustal depth. Units 4 and 6 consist of interlayered eclogite and paragneiss; the eclogites are characterized by Th, U, Nb, Ta and Ti depletion and K enrichment and LREE-enriched REE patterns. Paragneisses show Nb, Ta, Sr and Ti depletions and LREE-enriched REE patterns occasionally with slightly negative Eu anomalies, indicating that their protoliths represent metamorphic supracrustal series. Unit 5 consists mainly of orthogneisses, showing distinct Nb, Ta, Sr and Ti depletions, and LREE-enriched REE patterns with pronounced negative Eu anomalies, suggesting granitic protoliths. In conclusion it is proposed that the southern Sulu UHP belt consists of a series of meta-supracrustal rocks, a layered mafic–ultramafic complex and granites.  相似文献   

13.
Occurrences of eclogite, eclogite-amphibolite, and garnet amphibolitefrom Puerto Cabello, Venezuela are described. Chemical analysesof thirteen rocks, eight garnets, six clinopyroxenes, and nineamphiboles are presented. Field evidence shows that the eclogitesand associated mafic rocks occur as sheets or lenses conformablewith pelitic and calcareous rocks and have been metamorphosedin situ. The associated country rocks have attained a metamorphicmineral assemblage typical of the epidote-amphibolite facies.The chemical composition of the eclogite and associated rocksis variable but is essentially that of tholeiitic basalt. Clino-pyroxenesfrom the eclogites are omphacites containing 34–51 moleper cent jadeite and the remainder largely diopside; coexistinggarnets contain approximately 50 mole per cent almandine, 24mole per cent pyrope, 25 mole per cent grossular+andradite,and 1 mole per cent spessartine. Determinations for the temperatureof metamorphism of these rocks give approximately 525±50°C. Determinations of total pressure of metamorphism, basedon the jadeite content of omphacite, on glaucophane II, kyanite,and calcite stability fields, and on stratigraphic reconstructionsgive a range of values between 5 and 10 kb with a most probablevalue near 7 kb. These data suggest a moderate geothermal gradientduring metamorphism of approximately 20 °C/km. An evaluationof the role of volatiles during metamorphism indicates thatthe original basalts were converted to eclogites in an environmentclosed to water and carbon dioxide. The field relationshipsat Puerto Cabello demonstrate the general instability of eclogite;the great majority of mafic rocks are amphibolites, garnet amphibolites,and eclogite-amphibolites. Eclogites, sensu stricto, are preservedonly in random ‘dry’ pockets within the stratigraphicsection containing the metabasalts. The transformation of basaltto eclogite to amphibolite is considered to have been a continuousparagenetic sequence during a single pseriod of metamorphism.  相似文献   

14.
The Strona-Ceneri Zone comprises a succession of polymetamorphic, pre-Alpidic basement rocks including ortho- and paragneisses, metasedimentary schists, amphibolites, and eclogites. The rock pile represents a Late Proterozoic or Palaeozoic subduction accretion complex that was intruded by Ordovician granitoids. Eclogites, which occur as lenses within the ortho-paragneiss succession and as xenoliths within the granitoids record a subduction related high-pressure event (D1) with peak metamorphic conditions of 710 ± 30 °C at 21.0 ± 2.5 kbar. After isothermal uplift, the eclogites experienced a Barrowtype (D2) tectonometamorphic overprint under amphibolite facies conditions (570-630 °C, 7-9 kbar). U-Pb dating on zircon of the eclogites gives a metamorphic age of 457 ± 5 Ma, and syn-eclogite facies rutile gives a 206Pb/238U age of 443 ± 19 Ma classifying the subduction as a Caledonian event. These data show that the main tectonometamorphic evolution of the Strona-Ceneri Zone most probably took place in a convergent margin scenario, in which accretion, eclogitization of MOR-basalt, polyphase (D1 and D2) deformation, anatexis and magmatism all occurred during the Ordovician. Caledonian high-pressure metamorphism, subsequent magmatism and Barrow-type metamorphism are believed to be related to subduction and collision within the northern margin of Gondwana. Editorial handling: Edwin Gnos  相似文献   

15.
This paper addresses the relationships between relic amphibole-eclogite facies (AE) eclogites and their host units, Archaean amphibolites, enveloped by Archaean tonalite–trondhjemite–granodiorite (TTG) gneisses, in the Kuru-Vaara study area in the northern Belomorian Province. According to observational constraints, the crystallization of the relic peak omphacite + Mg-garnet ± kyanite assemblage and the subsequent replacement of omphacite by clinopyroxene–plagioclase symplectite occurred before the earliest deformational, metamorphic, and migmatization events that are recorded in the amphibolites. The amphibolites and their TTG hosts have a shared deformational and metamorphic history that is composed of the Archaean and Palaeoproterozoic periods. This history favours the conclusion that the AE metamorphism recorded in the relic eclogites within the amphibolites occurred during the Mesoarchaean to Neoarchaean periods. The deformation and metamorphism of the amphibolite facies of the second period resulted from the Lapland–Kola collisional orogeny at 1.91–1.93 Ga, which led to eclogite–high-pressure granulite (E–HPG) facies conditions in the lowermost portions of the over-thickened crust in Belomorian Province (the southwestern foreland of the Lapland–Kola collisional orogen). The Palaeoproterozoic E–HPG overprint was reported from the Palaeoproterozoic Gridino mafic dikes. Although the ages of the oldest low Th/U zircons are close to the time of the Lapland–Kola collision, the low Th/U 1.9–1.8 Ga zircons reflect a zircon response to regional fluid infiltration in the eclogites during slow exhumation following the Lapland–Kola orogeny and do not record any metamorphic event. Contrary to the Palaeoproterozoic E–HPG overprint, the areal occurrence of the 2.7–2.8 Ga AE eclogites with mid-ocean ridge basalt-like chemistry and their paragenetic link with the TTG gneisses suggest a tectonic regime that involves subduction. This research favours concepts suggesting that the modern-style plate tectonics has operated in some places, at least since the late Mesoarchaean.  相似文献   

16.
Eclogite fades rocks in this area are diverse in rock type. The field occurrence and rock-chemistry reflect theirin-situ origin. Based on their regional geology and field occurrence, two groups of eclogites are divided in terms of their peak temperature of metamorphism. Medium-temperature eclogites (MT), as Group B, occur in the Dabie Group. They were formed from epidote-amphibolite facies. The metamorphism of eclogite facies has two stages: the coesite eclogite facies stage (the peak condition:T = 600 -700°C,P = 2.7-3.0 GPa) and the glaucophane eclogite facies stage (the pressure decreases, may be lower than 2.5 GPa while the temperature has little change). Low temperature eclogites (LT), as Group C, occur in the Qijiaoshan Formation. They were formed from blue schist facies (the peak condition:T = 490–560°C,P< 1.5 GPa). The appearance of hydrous minerals in the eclogites indicates the important role of water in metamorphism. Medium-temperature eclogites are different from low-temperature ones in metamorphism. At last, the evolution of the high-pressure metamorphic belt is discussed as well. This research project was financially supported by the National Natural Science Foundation of China (No. 49372100).  相似文献   

17.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

18.
Both oceanic and continental HP rocks are juxtaposed in the Huwan shear zone in the western Dabie orogen, and thus provide a window for testing the buoyancy‐driven exhumation of dense oceanic HP rocks. The HP metamorphic age of the continental rocks in this zone has not been well constrained, and hence it is not known if they are of the same age as the exhumation of the HP oceanic rocks. In situ laser ablation (multiple collector) inductively coupled plasma mass spectrometry (LA‐(MC‐)ICP‐MS), U–Pb, trace element and Hf isotope analyses were made on zircon in a granitic gneiss and two eclogites from the Huwan shear zone. U–Pb age and trace element analysis of residual magmatic zircon in an eclogite constrain its protolith formation at 411 ± 4 Ma. The zircon in this sample displays εHf (t) values of +6.1 to +14.4. The positive εHf (t) values up to +14.4 suggest that the protolith was derived from a relatively depleted mantle source, most likely Palaeotethyan oceanic crust. A granitic gneiss and the other eclogite yield protolith U–Pb ages of 738 ± 6 and 700 ± 14 Ma, respectively, which are both the Neoproterozoic basement rocks of the Yangtze Block. The zircon in the granitic gneiss has low εHf (t) values of ?14.2 to ?10.5 and old TDM2 ages of 2528–2298 Ma, suggesting reworking of Palaeoproterozoic crust during the Neoproterozoic. The zircon in the eclogite has εHf (t) values of ?1.0 to +7.4 and TDM1 ages of 1294–966 Ma, implying prompt reworking of juvenile crust during its protolith formation. Metamorphic zircon in both eclogite samples displays low Th/U ratios, trace element concentrations, relatively flat heavy rare earth element patterns, weak negative Eu anomalies and low 176Lu/177Hf ratios. All these features suggest that the metamorphic zircon formed in the presence of garnet but in the absence of feldspar, and thus under eclogite facies conditions. The metamorphic zircon yields U–Pb ages of 310 ± 3 and 306 ± 7 Ma. Therefore, both the oceanic‐ and continental‐type eclogites share the same episode of Carboniferous eclogite facies metamorphism. This suggests that high‐pressure continental‐type metamorphic rocks might have played a key role in the exhumation and preservation of oceanic‐type eclogites through buoyancy‐driven uplift.  相似文献   

19.
For a long time the Moslavačka Gora Massif in Croatia has been regarded as a major outcrop of Variscan crystalline basement of the South Tisia block. However, new geochronological data indicate that this massif consists of a Cretaceous S-type granite pluton intruding a Cretaceous low-pressure/high-temperature (LP/HT) metamorphic envelope. The age of the LP/HT metamorphism is estimated at ~90–100 Ma using the method of electron microprobe based monazite dating. The Central Granite was dated at 82 ± 1 Ma (LA-SF-ICP-MS zircon age). The metamorphic complex comprises mainly felsic anatexites and orthogneisses of granitic composition, some metapelites (paragneisses and mica schists) and amphibolites. Zircons from three different samples of metagranite were dated at 486 ± 6, 483 ± 6, and 491 ± 1 Ma, suggesting that most of the metamorphic complex represents an Early Ordovician granitic series. The Cretaceous regional metamorphism culminated in granulite facies conditions of ~750°C and 3–4 kbar. A retrograde metamorphic event at lower amphibolite facies conditions overprinted the metamorphic complex. This event is probably related to the intrusion of the Central Granite. The southeastern sector of the massif was additionally affected by post-granitic, predominantly NE oriented shearing at greenschist facies conditions. As yet there is no clear evidence for Variscan events in the Moslavačka Gora Massif. Mineral relics of a medium-pressure amphibolite facies metamorphism are preserved in amphibolites. They are older than the Cretaceous LP/HT regional metamorphism, but their age is presently unknown. Some indications for a Permian regional metamorphic event are provided by inherited zircons in the Central Granite that have been dated with a Permian age, and by Permian monazite relics in metapelites. The Cretaceous high heat flow regime recorded in the Moslavačka Gora Massif is unique in the subcrop of the Pannonian Basin and may be a local feature triggered by a mafic intrusion in the lower crust.  相似文献   

20.
The Kulet eclogite in the Kokchetav Massif, northern Kazakhstan, is identified as recording a prograde transformation from the amphibolite facies through transitional coronal eclogite to fully recrystallized eclogite (normal eclogite). In addition to minor bodies of normal eclogite with an assemblage of Grt + Omp + Qz + Rt ± Ph and fine‐grained granoblastic texture (type A), most are pale greyish green bodies consisting of both coronal and normal eclogites (type B). The coronal eclogite is characterized by coarse‐grained amphibole and zoisite of amphibolite facies, and the growth of garnet corona along phase boundaries between amphibole and other minerals as well as the presence of eclogitic domains. The Kulet eclogites experienced a four‐stage metamorphic evolution: (I) pre‐eclogite stage, (II) transition from amphibolite to eclogite, (III) a peak eclogite stage with prograde transformation from coronal eclogite to UHP eclogite and (IV) retrograde metamorphism. Previous studies made no mention of the presence of amphibole or zoisite in either the pre‐eclogite stage or coronal eclogite, and so did not identify the four‐stage evolution recognized here. P–T estimates using thermobarometry and Xprp and Xgrs isopleths of eclogitic garnet yield a clockwise P–T path and peak conditions of 27–33 kbar and 610–720 °C, and 27–35 kbar and 560–720 °C, respectively. P–T pseudosection calculations indicate that the coexistence of coronal and normal eclogites in a single body is chiefly due to different bulk compositions of eclogite. All eclogites have tholeiitic composition, and show flat or slightly LREE‐enriched patterns [(La/Lu)N = 1.1–9.6] and negative Ba, Sr and Sc and positive Th, U and Ti anomalies. However, normal eclogite has higher TiO2 (1.35–2.65 wt%) and FeO (12.11–16.72 wt%) and REE contents than those of coronal eclogite (TiO2 < 0.9 wt% and FeO < 12.11 wt%) with one exception. Most Kulet eclogites plot in the MORB and IAB fields in the 2Nb–Zr/4–Y and TiO2–FeO/MgO diagrams, although displacement from the MORB–OIB array indicates some degree of crustal involvement. All available data suggest that the protoliths of the Kulet eclogites were formed at a passive continent marginal basin setting. A schematic model involving subduction to 180–200 km at 537–527 Ma, followed by slab breakoff at 526–507 Ma, exhumation and recrystallization at crustal depths is applied to explain the four‐stage evolution of the Kulet eclogite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号