首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foraminifera, sedimentology, and tephra geochemistry in core 93030-006 LCF from the southwestern Iceland shelf were used to reconstruct paleoenvironments between 12.7 and 9.4 14C ka BP. Seismic-reflection profiles place the core in glacial-marine and marine sediments within one meter of the underlying glacial till. Foraminifers in the earliest glacial-marine sediments provide a record of ice-distal conditions and immigration of slope species onto the shelf in association with warm Atlantic water. Meltwater increased during the Allerød under a weakened Atlantic water influence. Arctic conditions began by 11.14 14C ka BP with an abrupt increase in meltwater and near exclusion of boreal fauna from the shelf. Meltwater diminished in the early Younger Dryas, coinciding with sea-surface cooling between 11.14 and 10.5 14C ka BP. A slight warming recorded in the uppermost glacial-marine sediments was interrupted by an inferred jökulhlaup event emanating from glacier ice on the Western Volcanic Zone. Retreat of the ice margin from the sea sometime between c. 10.3 and 9.94 14C ka BP coincided with this event. The onset of postglacial marine sedimentation occurred along with increasing evidence of Atlantic water c. 9.94 14C ka BP and was interrupted by a short-lived Pre-boreal cooling of the Irminger Current c. 9.91 14C ka BP. Conditions similar to those today were established by 9.7 14C ka BP.  相似文献   

2.
Lake Boksehandsken, the largest lake on Jameson Land, central East Greenland, is situated 54 m a.s.l. and holds a long (6.3 m) and complex stratigraphy. It was analysed with respect to lithology, carbon content, 14C, micro- and macrofossils. The diamict material in the bottom is overlain by a fining-upwards sequence, possibly deposited close to a receding ice margin in a glaciomarine environment. These deposits are interpreted to have been formed at the time of the marine limit ( c . 70 m) in the area. In spite of a large series of 14C datings, very few of the obtained dates were considered reliable. This is because the sediments contain coal fragments and old redeposited plant remains. Based on a set of arguments and correlations to the surrounding glacial stratigraphy it is implied that the marine limit and deglaciation cannot be much older than 10,000 BP. The lithology of the lake sediments, in combination with occurrence of marine macrofossils. shows that deglaciation was succeeded by a (glacio)marine depositional environment. The lake was isolated from the sea at c . 9000 BP. followed by a short transgression and a final isolation at c . 8400 BP. This sequence of events is demonstrated by both litho-and biostratigraphy and possible causes are discussed. A later oscillation some time between 8000 and 7500 BP. evidenced by litho-, carbon-, pollen- and Pecliastrum stratigraphy, is interpreted as a regional climatic cooling possibly correlatable to a distinct δ18O minima in the Greenland ice cores.  相似文献   

3.
An exhaustive 14C dating programme of molluscs from the Fossvogur sediments in Reykjavik. Iceland is presented. For the first time all the fossiliferous units of the sediments are dated. The results confirm earlier conclusions of a widespread occurrence of marine sediments of Allerød age in Reykjavik. The set of dates from the Fossvogur sediments shows a narrow 14C age distribution (standard deviation of ±235 years) of molluscs from all localities and from successive marine units in vertical sections. The weighted mean conventional 14C age is 11,400 BP. Assuming a reservoir effect of 400 years. this corresponds to a reservoir-corrected age of I1,000 BP. i.e. the Allerød- Younger Dryas transition for the sampled units, These new 14C dates from Fossvogur confirm the need for a revision of the Upper Pleistocene chronology of the Reykjavik region. They also have a bearing on the Late Weichselian record of glacier readvances and sea-level changes in the area. The dates suggest that the marine units in Fossvogur accumulated within a restricted time-span of a few hundred years. The sediments in Fossvogur are of volcaniclastic origin and are extremely lithified, indicating local geothermal activity soon after their deposition. This may explain anomalously high D/L amino acid ratios measured in molluscs from the Fossvogur sediments. δ13C and δ18O results suggest that temperatures may have ranged up to 60°C.  相似文献   

4.
A new varve diagram from the river Ångermanälven could be correlated to the postglacial varve chronology to between 4903 and 4415 varve years BP. An AMS 14C measurement on terrestrial macrofossils obtained between 4715 and 4706 varve years BP gave a calibrated age of between 5730 and 5040 calendar years BP. The discrepancy between varve and calender-year age indicates that an error or part of an error in the Swedish varve chronology may be situated between 2000 and 5000 varve years BP.  相似文献   

5.
Analysis of 2D and 3D seismic records from the continental shelf off western Norway, in combination with chronological constraints from 14C dates, has led to a model for the glacial development in these shelf areas between c. 15 and 13 14C ka BP. On the shallow Måløy Plateau adjacent to the Norwegian Channel, iceberg scours are preserved below a prominent moraine ridge, which by correlation to the Norwegian Channel indicate ice retreat at c. 15 14C ka BP. Subsequently, the ice advanced across the scoured surface and deposited a till sheet before stabilizing to deposit a prominent moraine, termed the Bremanger Moraine. Based on location on the shelf, seismic stratigraphy, morphology and C dates the Bremanger Moraine is correlated with a significant moraine on the continental shelf off Trøndelag. We suggest that these features are products of a regional glacial event, the Bremanger Event, dated to <15–13.3 14C ka BP. The Bremanger Event is probably a result of the deteriorating climatic conditions in the NE Atlantic during Heinrich event 1.  相似文献   

6.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

7.
Lacustrine sediments, 13 m thick, have been discovered under a Late Valdaian (Late Weichselian) moraine complex in a palaeokarst depression at Biržai, northern Lithuania. Wood fragments from silty layers in the basal part of the section were 14C dated at 34,440 ± 1500 (Vs-412) and 33,460 ± 1060 BP (LU-1633). Pollen analytical results suggest that taiga landscapes similar to the present-day environments in the Pechora Basin and eastern Urals occurred on the southern cryogenic grounds. Evidently, the ice sheet did not penetrate into the eastern Baltic region during the Middle Valdaian interval.  相似文献   

8.
Sediments from two small lakes distal to the Tromsø–Lyngen moraine at Tromsø, northern Norway, indicate that the area was deglaciated prior to c. 11.7 14C ka BP. The earliest vegetation was dominated by calciphilous and heliophilous pioneer plants on unstable soils; this changed to a vegetation reflecting a dry continental climate until c. 10.7 14Cka BP. A phase (10.7–10.5 14Cka BP) with snow-bed communities was followed by one with a mosaic of plant communities. This was succeeded by Empetrum heaths c. 10.3 14Cka BP, then by an open forest with Betula pubescens after 10.0 14Cka BP. Ice-front oscillations in the Tromsø area are evaluated. The main part of the Younger Dryas glacial readvance, the Tromsø–Lyngen event, probably occurred between 10.7 and 10.3 14Cka BP.  相似文献   

9.
Rundgren, M., Ingólfsson, Ó., Björck, S., Jiang, H. & Haflioason, H. 1997 (September): Dynamic sea-level change during the last deglaciation of northern Iceland. Boreas , Vol. 26, pp. 201–215. Oslo. ISSN 0300–9483.
A detailed reconstruction of deglacial relative sea-level changes at the northern coast of Iceland, based on the litho- and biostratigraphy of lake basins, indicates an overall fall in relative sea level of about 45 m between 11300 and 9100 BP, corresponding to an isostatic rebound of 77 m. The overall regression was interrupted by two minor transgressions during the late Younger Dryas and in early Preboreal, and these were probably caused by a combination of expansions of local ice caps and readvances of the Icelandic inland ice-sheet margin. Maximum absolute uplift rates are recorded during the regressional phase between the two transgressions (10000–9850 BP), with a mean value of c . 15 cm 14C yr-1 or 11–12 cm cal. yr-1. Mean absolute uplift during the regressional phase following the second transgression (9700–9100 BP) was around 6 cm 14C yr-1, corresponding to c . 3 cm cal. yr-1, and relative sea level dropped below present-day sea level at 9000 BP.  相似文献   

10.
A survey of the revised lateglacial varve chronology is given. Almost all revisions are based on new, independent measurements not yet finished. Compared with the old time scale, the preliminary datings (calendar years ± a margin of error) of the ice margin retreat are 'older', mainly due to the fact that the postglacial varve chronology has been extended by 365 years. This implies that the so-called zero year ( sensu De Geer 1940: limit of late glacial and beginning of postglacial varve sedimentation). earlier estimated at 6,923 B.C. (Nilsson 1964), is now dated 7,288 B.C. According to the new time scale, deglaciation from Stockholm to the area of zero-year formation in Indalsälven's valley lasted about 1,190 ± 40 years, compared with 1,073 years in De Geer's (1940) time scale or 1,092 in Jarnefors' (1963). Preliminary varve graph correlations, which are still very weak concerning the Fennoscandian moraine zone, indicate that the ice receded from Högsby, northwest of Kalmar at approximately 10,700+200−300 B.C. At localities just to the north of the Fennoscandian moraines, deglaciation started about 8,750+50−150 years B.C. according to the new varve measurements, and the ice front receded in southern Stockholm 8,470+40−140 B.C. Varve dating now gives older ages (calendar years) than 14C-dating; about 200–400 years older regarding some ice margin positions in south Sweden.  相似文献   

11.
Values of δ13C obtained from conventional bulk sediment radiocarbon dates encompassing the Pleistocene Holocene boundary have been compiled and plotted against 14C age. In all. 286 lake sediment dates from southern Sweden in the range 8.000 to 13.000 BP have been evaluated. A significant decrease in δ13C values, initiated shortly before 10.000 RP and amounting to 5%, is distinguished. This change is accompanied by increased limnic productivity. decreased erosive input and increased organic carbon content of the sediments. A probable explanation for the δ13C decline in organic material is decreased importance of dissolution of silicates at the transition to the Holocene. During the Late Weichselian. extensive weathering of exposed minerogenic material with subsequent input of bicarbonate to the lake water may have caused a relative enrichment of 13C in dissolved inorganic carbon. Furthermore, the early Holocene increase in terrestrial vegetation cover probably led to an increased supply of 13C depleted carbon dioxide to the lake water by root respiration. Altered limnic vegetation, presumably towards increased production of phytoplankton. could also have contributed to the observed decreasing δ13C trend. The importance of these processes compared to other possible influencing factors. mainly endogenic carbonate production and changes in the global carbon cycle. is discussed.  相似文献   

12.
This paper reviews the deglaciation history and palaeoclimate from 22 to 9.5 14Cka BP in the Andfjord-Vagsfjord area. Eight main glacial events are recorded: The Egga-I (>22 14Cka BP), the Bjerka, the Egga-II (>14.6 14Cka BP), the Flesen (14.5 14Cka BP), the D (13.8–13.2 14Cka BP), the Skarpnes (12.2 14Cka BP), the Tromsø–Lyngen (10.7–10.3 14C ka BP) and the Stordal (10.0–9.5 14Cka BP). Onset of the final deglaciation occurred about 14.6 14Cka BP. Most of the western part of the Fennoscandian and Barents Sea Ice Sheets receded from the outer continental shelf 15–14 14Cka BP. The delivery and melting of icebergs at this time to the Norwegian-Greenland Sea resulted in a low oxygen isotope event recorded in a number of cores in the region. Atlantic water intruded the area 13.2 14Cka BP, and an atmospheric warming commenced 12.9/12.8 14Cka BP. A marked glacial recession occurred before the Skarpnes event. During Allerød time, the glaciers retreated to the fjord heads or even farther inland. The Fennoscandian outlet glaciers readvanced (locally more than 40 km), reached their Younger Dryas outer limit after 10.7 14Cka BP and retreated from this position before about 10.3 14Cka BP.  相似文献   

13.
In connection with a new deglaciation concept for Iceland, implying an extensive glaciation during the Younger Dryas and the decay of the Icelandic inland ice sheet during the Preboreal, the history of relative sea-level changes on Iceland has been re-evaluated. New field data from the Reykjavik area, in Faxaflói Bay southwestern Iceland, were obtained in order to construct the first stratigraphically controlled curve of relative sea-level displacements for Iceland. The curve is constructed on the basis of radiocarbon-dated shells in raised marine deposits and on tephrostratigraphically controlled and radiocarbon-dated, submerged peat deposits. The curve suggests that a post-glacial relative sea-level change of about 45 m, from + 43 m a.s.1. to — 2 m a.s.l, occurred over a period of 900 14C-years in the Reykjavik area between 10 300 BP and 9400 BP. The sea-level curve shows a shoreline displacement of c . 5 cm 14Cyr-1 for that period. The mean absolute uplift rate is calculated to be 6.9 cm 14C yr-1, which is about double the fastest rate reported from any other coastal North Atlantic site. Although this rapid uplift can probably be partly explained by a 14C plateau around the termination of the Pleistocene, it is more than likely controlled by rapid Preboreal deglaciation, together with low asthenosphere viscosities below Iceland and the release of hydroisostatic stresses in connection with the deglaciation.  相似文献   

14.
Varved lake sediments can be used to set multiple environmental proxies within a calendar year time scale. We undertook a systematic survey of lakes in the Province of Värmland, west central Sweden, with the aim of finding continuous varved lake sediment sequences covering the majority of the Holocene. In Fennoscandia, such sediments have previously only been recorded in northern Sweden and in southern and central Finland. By following a selective process and fieldwork we discovered three new varved sites (i.e. Furskogstjärnet, Mötterudstjärnet and Kälksjön). We found that lakes with varved sediments have several common lake morphometry properties and lake catchment characteristics such as maximum water depth, maximum water depth/lake surface area ratio, catchment soil types, altitude and number of inflows. Varve chronologies, supported by AMS-14C dating and tephrochronology were established for two of the sediment profiles. These varve chronologies are the longest geological records with an annual resolution known to exist in Sweden. In Furskogstjärnet, the AMS- 14C dates based on terrestrial plant macrofossils at several levels deviate significantly from the varve based time-depth curve. In Motterudstjarnet, a fully reasonable time-depth model based on the 14C dates gives older ages in the lower part of the sequence compared to the varve chronology. These results highlight that seemingly acceptable AMS radiocarbon dates may be erroneous. They also point to the fact that varved lake sediments are reliable geological archives with respect to chronological control and accuracy. Thus, these archives should be of prime interest for studies of climate and environmental change undertaken with the aim of providing sub-decadal resolution proxy data sets.  相似文献   

15.
New pollen-analytical investigations and two 14C series indicate that, at the Bedrina on Mount Piottino (Tessin, Switzerland), the post-Allerød NAP phase (Piottino oscillation) represents the well-marked Younger Dryas at least for the most part. The late-glacial part of the profile is re-classified, and the term Piottino oscillation is rejected, as it is largely identical with the Younger Dryas. Individual 14C dates from the transition between the Younger Dryas and the Preboreal should be considered critically. Considerable fluctuations in the 14C level are supposed for this period.  相似文献   

16.
Surface exposure dating, using in situ produced cosmogenic 10Be, is applied to determine the time since deglaciation of bedrock surfaces in the Grimsel Pass region. Nine 10Be dates from bedrock surfaces corrected for cover by snow are minimum ages for deglaciation of the pass. Four 10Be dates from surfaces below 2500 meters above sea level (m a.s.l.) on Nägelisgrätli, east of Grimsel Pass, yield ages that range from about 14 000 to 11 300 years. Three 10Be dates from locations above 2600 m a.s.l. on Nägelisgrätli are between about 11 700 and 10 400 years. Two 10Be dates from locations at 2560 m a.s.l. below Juchlistock are about 12 100 and 11 000 years. The geographical distribution of 10Be dates on Nägelisgrätli either may show the timing of progressive deglaciation of Grimsel Pass or may reflect differences in subglacial erosion of bedrock in the pass region. All dates are discussed in the context of deglaciation of the late Würmian Alpine ice cap and deglaciation from Last Glacial Maximum (LGM) ice extents in other regions.  相似文献   

17.
The timing of the extinction of the Australian Megafauna and whether it was simultaneous and widespread has been a much researched topic in Quaternary geoscience. The Black Creek Swamp Megafauna site on Kangaroo Island was thought to be a refugium for Megafauna; however, recent and multidiscipline age determinations have established that the fossils are considerably older than the well-quoted extinction age of 45 kyr. Further radiocarbon age determinations, δ13C isotope analysis and 13C-NMR spectroscopy of the fossil containing organic matter demonstrates that it is highly soluble and accumulated as recently as 31–18 cal. kyr BP. These radiocarbon ages are much younger than the 100–50 kyr age bracket ascertained for the fossil material itself, implying separate episodes of death, deposition and burial. The soluble nature of the organic matter and increasing radiocarbon ages with depth suggests lateral accumulation, probably transported by subsurface waters from elevated areas proximal to the low-lying swamp. Such depositional conditions and 14C age range implies that the site may have experienced an unusually wet Last Glacial Maximum, due maybe to its proximity to the continental shelf and thus to maritime conditions. C3 vegetation dominates the Black Creek Swamp and its organic matter (δ13C; −30‰ and −23‰); however, variations in δ13C may indicate climatic shifts. 13C-enrichment and an abundance of salt-tolerant gastropods within the site's final phase of sediment accumulation (<6 cal. kyr BP) suggest that conditions during this most recent period were not as wet as those of the Last Glacial Maximum.  相似文献   

18.
Four sites in northwestern Dalsland and southwestern VHrmland, southwestern Sweden were investigated. including studies of marine biostratigraphy and AMS datings. A marine foraminifera and mollusc fauna existed in the area between c . 10 400 and 9700 14C years BP. Arctic assemblages dominate the lowermost layers, deposited immediately after the deglaciation. A transition to more diverse faunas affected by a higher meltwater influence and decreasing water depths is recorded higher up in the succession. Northwestern Dalsland was dcglaciated between c . 10 400 and 10 200 BP, and southwestern Viirmland between c . 10 100 and 9800 BP. A stagnation in the retreat of the ice margin is suggested at 10 300 to 10 200 BP. The subsequent rapid ice recession was probably an effect of warmer conditions at the Pleistocene-Holocene climatic transition. A similar shift in the early Preboreal (c. 9900 BP) probably represents the dcglaciation which followed after the stagnation at the Ski moraines. Renewed glacial activity is indicated at c . 9700 BP.  相似文献   

19.
The last deglaciation of the Franz Victoria Trough, northern Barents Sea   总被引:4,自引:0,他引:4  
A study of two piston cores and a 3.5 kHz seismic profile from the Franz Victoria Trough provides new stratigraphic, stable isotopic and foraminiferal AMS 14C data that help constrain the timing of ice-sheet retreat in the northern Barents Sea and the nature of the deglacial marine environment. Silty diamicton at the base of each core, interpreted as till or ice-marginal debris flow, suggests that the Barents ice sheet was grounded at the core sites (470 m water depth). Eight AMS 14C dates on sediment overlying the diamicton indicate that the ice sheet retreated from both core sites by 12.9 ka and that postglacial sedimentation began 10 ka ago. These dates, combined with a recently published 14C date from a nearby core, suggest that the Franz Victoria Trough may not have been deglaciated until c . 13 ka, 2000 years later than modeled ice-sheet reconstructions indicate. In the trough, oxygen isotopic ratios in planktonic foraminifera N. pachyderma (sinistral) were 0.5–0.750, lower during deglaciation than after, probably as a result of ice-sheet and/or iceberg melting. Foraminiferal assemblages suggest that Atlantic-derived intermediate water may have begun to penetrate the trough c . 13 ka ago.  相似文献   

20.
Four stratigraphic sections in the southern part of the Columbia Basin preserve a sequence of aeolian and non-aeolian sediments ranging in age from 9·43 to >47·0 14C ka based on accelerator mass spectrometry radiocarbon dating of fossil molluscs, geochemistry of Cascade Mountain-sourced tephra and association with formally recognized pedostratigraphic units (the Washtucna and Old Maid Coulee soils). Study sections are interpreted as representing concurrent deposition of loess and distal Missoula Flood rhythmites in valleys tributary to main drainages backflooded during the Missoula Floods, and formation of carbonate and iron-rich soils. Sediments belong to the formally recognized L-1 and L-2 loess units established for the Palouse loess, which were deposited in the Columbia Basin subsequent to events of glacial outburst flooding. Sediments associated with the Mount Saint Helens set S and set C tephras in the study sections preserve a fauna of five species of gastropod mollusc which have not been reported previously from sediments of late Pleistocene age in the Palouse region. The fossils comprise two distinct faunules stratigraphically separated by the Mount Saint Helens So tephra. Accelerator mass spectrometry radiocarbon dating of the fossils collected above the tephra in two of the sections yielded ages of 12·48 ± 0·06 and 9·43 ± 0·05 14C kyr. These ages suggest that independent determinations of the 13·35 14C kyr age of the So tephra in other areas where Missoula Flood sediments are preserved are probably accurate, and help to refine the age of the latest events in the most recent sequence of catastrophic glacial outburst flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号