首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Two modelling approaches for the analyses of half-space and train-track embankment on half-space subjected to dynamic loads are presented and compared. A three-dimensional (3D) modelling approach is performed by a coupled Boundary Element–Boundary Element method (BE–BE) and a two-dimensional (2D) one by a coupled Boundary Element–Finite Element method (BE–FE). Both approaches employ time domain algorithms. The comparison between the results of the presented approaches points out whether a problem can be treated as a 2D or as a 3D case. As an application, a parametric study of the wave propagation problem in a train-track embankment with an underlying half-space is presented.  相似文献   

2.
饱和多孔介质近场波动分析的一种黏弹性人工边界   总被引:2,自引:0,他引:2       下载免费PDF全文
采用有限模型数值方法求解能量开放系统中的波动问题时,虚拟人工边界的处理方式对计算结果的准确性和精度具有重要的影响.本文针对无限域饱和多孔介质中波传播问题的人工边界处理方式进行了研究,提出了饱和多孔介质近场波动分析的一种黏弹性人工边界处理方法.在考虑多孔介质中固相和液相的相互作用的情况下,通过在人工边界处分别施加反映固相和液相介质波传播效应的弹簧及阻尼来模拟饱和多孔介质中波的能量辐射效应影响.算例表明,本文建议的黏弹性人工边界具有较好的模拟效果.  相似文献   

3.
本文提出了一种计算不规则起伏地形中SH波散射的有效方法——局域边界元法.本方法基于传统边界元法,为计算复杂地表散射问题提供了一种更加高效的解决方案.根据地震波满足的边界积分方程中牵引力格林函数的特性,我们将自由边界分解成水平部分和起伏部分.通过公式推导,可将水平部分的位移由起伏部分的位移通过格林函数线性叠加表示,因此只需对起伏部分的位移进行直接求解,从而极大地减少了待求解的未知数个数,显著提高了计算效率.通过与半圆形山谷SH波平面波入射的解析解比较,验证了方法的正确性.数值模型比较显示,局域边界元模拟结果与传统边界元数值解完全吻合,但是大幅提高了计算效率.因此,局域边界元法可以作为模拟不规则地形中地震波散射的有效工具.  相似文献   

4.
The present work shows the propagation of Scholte interface waves at the boundary of a fluid in contact with an elastic solid, for a broad range of solid materials. It has been demonstrated that by an analysis of diffracted waves in a fluid it is possible to infer the mechanical properties of the elastic solid medium, specifically, its propagation velocities. For this purpose, the diffracted wave field of pressures and displacements, due to an initial wave of pressure in the fluid, are expressed using boundary integral representations, which satisfy the equation of motion. The source in the fluid is represented by a Hankel’s function of second kind and zero order. The solution to this wave propagation problem is obtained by means of the Indirect Boundary Element Method, which is equivalent to the well-known Somigliana representation theorem. The validation of the results is carried out by using the Discrete Wave Number Method and the Spectral Element Method. Firstly, we show spectra of pressures that illustrate the behavior of the fluid for each solid material considered, then, we apply the Fast Fourier Transform to show results in time domain. Snapshots to exemplify the emergence of Scholte’s waves are also included.  相似文献   

5.
The fundamental solutions of axisymmetric elastodynamic problem for the multilayered half-space due to an impulsive ring source acting within a layered elastic media are derived in time domain with the aid of Laplace–Hankel mixed transform and transfer matrix techniques. In addition, an effective numerical procedure, which utilizes the fast Hankel transform algorithm, is also proposed to calculate these solutions. Illustrative examples have been given to demonstrate that the fundamental solutions can be readily evaluated and the numerical results are of high accuracy. The present solutions can be directly applied to determine the transient wave fields caused by a seismic source and show the potential application to the elastodynamic problems solved by the boundary element method.  相似文献   

6.
A Fourier transform approach is applied to the transient analysis of dynamic soil–structure interaction under SH-motion. The governing equations are formulated in the frequency domain using a Finite Element–Boundary Element (FE–BE) coupling method. After solving the transformed problem, the transient solution is obtained using the discrete inverse Fourier transform with a fast Fourier transform algorithm. Two examples are presented in order to show the numerical performance of the proposed technique.  相似文献   

7.
Simple Finite Element models for soil dynamics and earthquake engineering problems in the frequency domain are a fast and valuable tool providing a first approximation before a full non-linear analysis in the time domain is performed.Quite often the problem concerns saturated soils with very small permeability and pore fluid of neglectable compressibility. In the limit, the permeability is assumed to be zero and the pore fluid incompressible. Here, engineers use standard finite element codes formulated in terms of displacements but incompressibility may result in volumetric locking of the mesh with a severe loss of accuracy.The purpose of this paper is to present a simple mixed finite element formulation in the frequency domain based on displacements and pore pressures as main variables. A suitable stabilization technique allowing for equal order interpolation of displacements and pressures has been introduced for incompressible and zero permeability limits.Of course, the range of application is limited to those problems in which the behaviour of the material can be approximated by linear models, and therefore modelling of phenomena such as liquefaction, cyclic mobility or cavitation occur is excluded.The paper shows as well an extremely simple way of coupling solid and water domains as it occurs for instance in quay walls under dynamic loading.  相似文献   

8.
This work presents an efficient methodology for the analysis of vibrations in a railroad track system, induced by the passage of conventional and high-speed trains. To this end the Boundary Element Method is used to model the soil-tie system within the framework of impulse response techniques. Conventional Finite Element Methods along with Newmark's integration is used for the modeling of the rail system. The two methods are coupled at the tie-rail interface and the solution is obtained following a staggered, time marching scheme in an efficient manner. The methodology accounts for Soil-Structure Interaction and traveling wave effects. In addition, this work identifies the parameters that affect the efficient modeling of railroad track systems as they pertain to the proposed solution methodology.  相似文献   

9.
This work presents an efficient and stable methodology for the coupling of Finite Element Methods (FEM) and Boundary Element Methods (BEM) that is independent of the particular solver and allows for independent temporal discretizations among solvers. The approach satisfies explicitly compatibility conditions and equilibrium of forces at the contact interfaces. Although the proposed approach has been developed in view of the soil-rail-vehicle dynamic interaction problem in High Speed Rail applications, it is expressed in a general form applicable to any multi-domain, multi-phase transient problem. The method development and formulations are presented in detail. Verification and application studies demonstrate the accuracy, efficiency and versatility of the method for the direct time domain solution of dynamic problems including structure-structure interaction and soil-structure interaction. The proposed approach demonstrates high accuracy and efficiency to that of direct coupling solutions and more rigorous methods.  相似文献   

10.
在二维层状介质中含有横向非均匀体的地电断面情况下,对电偶源的偶极长度作了延长,并选取了适当的基本解及无穷远边界条件,因而将相应的含源谐变电磁场的边值问题转化为较简单的边界积分方程.用边界单元法求出了相应的电磁场分量,进而计算阻抗视电阻率,并对这一算法作了相应的检验.  相似文献   

11.
The goal of this work is to solve Maxwell equations analytically and numerically in a one-dimensional case under the conditions of a nonstationary medium. Analytical solutions to the Maxwell equations have been obtained in two partial cases of the linear and quadratic time dependence of medium permittivity. Since the number of models for which the wave equation can be solved analytically is limited, it becomes also necessary to apply numerical methods, specifically the method of finite differences, in a time domain Finite Difference Time Domain method. The effects of the decameter wave dynamic reflection from structures with considerable spatial gradients (the scales of which are comparable with the sounding pulse wavelength) have been studied based on this method. It has been shown that the spectrum can broaden and a Doppler frequency shift of a reflected signal can originate can take place.  相似文献   

12.
The present work gives solutions of integrals resulting from Lamb's problem solution by an accurate and efficient approximation procedure. The formulation of the solutions requires the study of Green's function of Lamb problem solution. Unfortunately, this problem is associated to great mathematical difficulties and needs the evaluation of some complex integrals. We handled these integrals by an appropriate strategy based on decoupling their effects mathematically and solved by using the least squares method. The present solutions can be applied to study the dynamical interaction between soil and structures, to be used to determine the transient wave fields caused by a seismic source, and also to assess numerical computations with a different numerical methods program.  相似文献   

13.
In the process of coal gasification, the phase transition from water to water vapour takes place as a result of high temperature. Thus, the parameters of the fluid flowing through the pores of the elastic skeleton change in a significant way. The goal of this work is to calculate the fluid flow process at a variable temperature using Finite Element Method and to determine the soil consolidation process taking place under its own weight and temperature changes. The mathematical model of thermal consolidation for a Biot body accounts for the phase transition of a liquid. Numerical calculations for a homogeneous and isotropic porous medium, consisting of two conventionally accepted layers, were carried out using the FlexPDE v. 6 software. The obtained results are a first approximation of the actual processes taking place under complex geological conditions. They make it possible to determine, in approximation, the range of the phase transition and the influence of water vapour filtration on soil consolidation.  相似文献   

14.
地震波场模拟方法研究对于与波动现象有关的地震学问题的重要性是不言而喻的.就目前现有的各种正演算法来说,精度较高的算法(如有限元法、谱元法、高阶有限差分法等),其计算速度较慢;计算速度较快的算法(如低阶有限差分法、付氏伪谱法等)计算精度却比较低.为了兼顾地震波场模拟的精度与速度,本文推出了一种快速的、高精度地震波场模拟方法(基于Forsyte广义正交多项式的褶积微分算子法),该方法是以计算数学中的Forsyte广义正交多项式插值函数为基础,构建一个新的褶积微分算子,并将该算子引入到地震波动方程的一阶速度-应力方程的空间微分运算中去,采用时间交错网格有限差分算子替代普通的差分算子以匹配高精度的褶积微分算子,从而构造一种全新的地震波场数值模拟方法.该方法同时具有广义正交多项式方法的高精度和短算子低阶有限差分算法的高速度.通过对算子长度的调节及算子系数的优化,可同时兼顾波场解的全局信息与局部信息.复杂非均匀介质模型中的波场数值模拟实验证实了该方法的可行性及优越性.  相似文献   

15.
Extraction of groundwater or hydrocarbons causes pore pressure gradients and soil deformation due to poroelastic coupling. Recent studies show that high-resolution engineering tiltmeters installed at shallow depth between 2 and 10 m resolve this deformation. Models using poroelasticity can describe the relationship between fluid extraction, pore pressure gradients and induced tilt for homogeneous and layered sedimentary half spaces. Faults intersecting a stack of sedimentary layers, for example in the Lower-Rhine-Embayment, are of fundamental impact to the groundwater flow system of an area. However, the fault’s hydromechanical effect on pump induced tilt and the pore pressure regime is still poorly investigated. We chose a comparatively simple approach to quantify anomalous pump induced tilt and pore pressure observed near a fault and close to the surface in a sedimentary subsoil. A PC-based Finite Element software is used to model poroelastic deformation, i.e. modelling vertical tilt and excess pore pressure in response to fluid extraction through a singular well. We compare numerical solutions for models with and without faults and show that a fault can modify symmetry and amplitude of the deformation field by more than a magnitude. We conclude that tilt and pore pressure measurements also at shallow depth can thus be biased by large subsurface structures like faults. Vice versa, these measurements may provide means to quantify hydromechanical effects caused by subsurface structures. However, depending on the geological setting, i.e. if pathways are established by a fault, the anomaly caused by the fault can also be small and hard to detect. Therefore, faults and geological structures like material boundaries have to be considered in poroelastic models carefully. For tilt surveys with a limited number of instruments in geologically well constrained areas these models allow the preselection of potential positions for tiltmeters where prominent field anomalies are expected.  相似文献   

16.
Abstract

Finite amplitude convection in spherical shells with spherically symmetric gravity and heat source distribution is considered. The nonlinear problem of three-dimensional convection in shells with stress-free and isothermal boundaries is solved by expanding the dependent variables in terms of powers of the amplitude of convection. The preferred mode of convection is determined by a stability analysis in which arbitrary infinitesimal disturbances are superimposed on the steady solutions. The shell is assumed to be thick and only shells for which the ratio ζ of outer radius to inner radius is 2 or 3 are considered. Three cases, two of which lead to a self adjoint problem, are treated in this paper. The stable solutions are found to be l=2 modes for ζ=3 where l is the degree of the spherical harmonics and an l=3 non-axisymmetric mode which exhibits the symmetry of a tetrahedron for ζ=2. These stable solutions transport the maximum amount of heat. The Prandtl number dependence of the heat transport is computed for the various solutions analyzed in the paper.  相似文献   

17.
18.
Different seismic testing techniques rely on the propagation of acoustic waves in fluid-filled boreholes from sources placed within the borehole and in the solid media. The interpretation of the signals recorded relies on understanding how waves propagate in the borehole and its immediate vicinity. It is known that very complex wave patterns can arise, depending on the distance between the source and the receiver, and their placement and orientation relative to the axis of a circular borehole. The problem becomes more complex if the cross-section is not circular, conditions for which analytical solutions are not known. In this work, the Boundary Element Method (BEM) is used to evaluate the three-dimensional wave field elicited by monopole sources in the vicinity of a fluid-filled borehole. This model is used to assess the effects of the receiver position on the propagation of both axisymmetric and non-axisymmetric wave modes when different borehole cross-sections are used. Both frequency vs. axial-wave number responses and time-domain responses are calculated.  相似文献   

19.
长应力波对于深部隧道衬砌的作用   总被引:1,自引:0,他引:1  
应力波与隧道衬砌的相互作用问题为岩石力学的一个十分复杂的问题,到目前为止还没有得到圆满的解决。对于考虑介质与结构弹塑性性质的课题,解析解更难以求得。研究表明长波与深地下硐室的作用问题可以用拟静法解答。本文用拟静法研究了考虑岩体塑性性质时长纵波与地下硐室的相互作用问题。并获得了确定长应力波对于隧道支护作用的解析解。  相似文献   

20.
A novel Finite Element Method (FEM) is proposed for the analysis of the uncoupled hydrodynamic pressures generated on arch dams due to a steady-state ground acceleration. In this method the equation governing hydrodynamic pressures and also the prescribed boundary conditions are all transformed from the Cartesian space to a logarithmically condensed cylindrical polar space; in this process the physical configuration of the reservoir-dam is also mapped into an ‘image’ domain. The transformed governing equation is then solved in the image domain, subject to the transformed boundary conditions, using standard finite elements. Because physical dimensions are logarithmically condensed in the image space, the proposed method is particularly suitable for dealing with large or very large aspect-ratio reservoir-dam systems, economically and efficiently. The high degree of accuracy which the proposed method is capable of, and also the simple way in which it can be applied to complex reservoir-dam shapes, have been demonstrated by means of examples. The method has also been applied to study the uncoupled hydrodynamic pressures on the upstream face of a cylindrical arch dam, generated by a steady-state vertical ground acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号