首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《China Geology》2018,1(2):236-256
The continent of China is grouped into Pan–Cathaysian blocks, Laurasia and Gondwana Continental margins and relics of three oceans-Paleoasian, Tethys, and Pacific as a whole. In detail, the continent of China grew up by coalescence of three blocks or platforms (North China, Tarim and Yangtze) and eight orogenic belts (Altay–Inner Mongolia–Daxinganling, Tianshan–Junggar–Beishan, Qinling–Qilian– Kunlun, Qiangtang–Sanjiang, Gangdisê, Himalaya, Cathaysia, Eastern Taiwan) during the processes of oceanic crust disappearance and acceretionary-collision of continental crusts. In the orogenic belts, six convergent crustal consumption zones (Ertix–Xar Moron, South Tianshan, Kuanping–Foziling, Bangong co–Shuanghu–Nujiang–Changning–Menglian, Yarlung–Tsangpo, Jiangshao–Chenzhou–Qinfang) have been distinguished. Correspondingly, the strata of the continent of China are subdivided into 17 tectonic-strata superregions, which tectonically belong to three blocks or platforms, six convergent crustal consumption zones and eight orogenic series, respectively. This division is based mainly on differences of tectonic environment and tectonic evolution among blocks, zones and belts, including the timing of when the oceanic crusts transferred into continental crusts, the paleobiogeographic features, and the types of strata.  相似文献   

2.
A series of linear to arcuate fault scarps separate the Mount Lofty Ranges from the Cenozoic St Vincent and Murray basins of South Australia. Their tectonic, sedimentary and geomorphic evolution is traced from the oldest rock record through to present-day seismicity. The scarps are the latest manifestation of repeated compressive reactivation of ancient, deep-seated crustal faults and fractures whenever the stress field was of appropriate orientation. Formation of the basins and uplift of the ranges resulted from the same processes of repeated compressive reactivation. Continental crust was intensely fractured during three episodes of Neoproterozoic–Cambrian rifting that led to the formation of the Adelaide Geosyncline and break-up of Rodinia. Neoproterozoic eastward-dipping, listric extensional faults provided accommodation space for deposition of the Burra Group. Sediments of the Umberatana and Wilpena groups were deposited under mainly sag-phase conditions. In the early Cambrian, new extensional faults formed the deeply subsident Kanmantoo Trough. Cambrian rift faults swung from east–west on Kangaroo Island through northeasterly on Fleurieu Peninsula to north–south in the easten Mount Lofty Ranges, cutting across the older meridional rifts. These two sets of extensional faults were reactivated as basement-rooted thrusts in the ensuing Delamerian Orogeny. The Willunga Fault originated as a Cambrian rift fault and was reactivated in the Delamerian Orogeny as a thrust dipping southeast under a regional basement-cored antiform on southern Fleurieu Peninsula. Much of southern Australia, including the eroded remnants of the Delamerian highlands, was covered by a continental ice sheet in the Carboniferous–Permian. The preferential preservation of glacial sediments on Fleurieu Peninsula may have resulted from extensional reactivation of the Willunga Fault, possibly in the early Mesozoic. Fleurieu Peninsula was then warped into an open, southwest-plunging antiform, spatially coincident with the much higher amplitude Delamerian antiform. Glacial sediments were eroded from uplifted (up-plunge) areas before formation of a ‘summit surface’ across deeply weathered bedrock and preserved glacial sediments in the later Mesozoic. This surface was covered with fluvial to lacustrine sediments in the middle Eocene. Neotectonic movements under a renewed compressive regime commenced with reactivation of the Willunga Fault, restricting subsequent Eocene to Miocene sedimentation to the St Vincent Basin. The Willunga scarp was onlapped in the Oligocene–Miocene concomitant with continuing uplift and formation of a hanging-wall antiform. In the late Cenozoic, repeated faulting and mild folding, angular unconformities, ferruginisation and proximal coarse sedimentation took place on various faults at different times until the late Pleistocene.  相似文献   

3.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

4.
Deformation patterns in subduction zones, feeder systems of volcanoes, and rifts are compared and investigated in terms of relations among elastoplastic strain, rheology, pore fluids, and temperature. Regional-scale subduction processes have been explored in segments of the Kuriles–Kamchatka, Izu-Bonin, and Mariana zones. Slab geometry constraints from the 3D velocity structure are used to model the balance of forces in the three subduction zones and to distinguish the regions of predominant push or pull. Stress and strain variations in suprasubduction crust are considered for the case of magma sources beneath the Klyuchevskoy group of volcanoes. Time-lapse (4D) seismic tomography shows crustal magma reservoirs to appear and disappear rapidly as the volcanoes become active or dormant, respectively. This behavior is due to rapid strain changes which cause fast flow of fluids and the ensuing decrease or increase of melting temperature in the magma reservoirs. In addition to subduction zones, stress–strain patterns are modeled for collisional (compressive) settings, with the example of the Altai–Sayan area and the Caucasus, and for the conditions of rifting (extension), in the case of the Vilyui basin. As the modeling shows, formation of a superdeep basin does not necessarily require the crust to stretch twice or more: only 20% stretching in the necking region is enough to produce a 10–15 km deep basin.  相似文献   

5.
《International Geology Review》2012,54(12):1510-1527
ABSTRACT

Devonian quartzite occurs as blocks within a phyllite matrix in Puziba area of the Mianlue Suture Zone (MLSZ) in central China. The depositional time of the quartzite is younger than 425 Ma (mainly Early Devonian), constrained by the zircon U–Pb geochronology data from the quartzite, cross-cutting relationships with granite, and palaeontology evidence. The detrital zircons in the quartzite show typical magmatic features with four main age peaks at: 2676–2420 Ma (11.6% of the population), 1791–1606 Ma (4.8%), 997–817 Ma (26.5%), and 597–425 Ma (17.5%). In combination with the zircon εHf(t) values, we propose that the quartzite in the MLSZ was sourced from Neoproterozoic and Palaeozoic magmatic and sedimentary rocks in the South Qinling Block and the South China Block (particularly from the Bikou Terrane), with minor contributions from Archaean and Palaeoproterozoic magmatic units from both of the South and North China blocks. The blocks of quartzite, slate, marble, metasandstone, and chert blocks in the phyllite matrix in the Puziba area show a typical block-in-matrix texture in a tectonic mélange, and provide significant evidence from sedimentary rock blocks rather than ophiolite or volcanic rock for the existence of the MLSZ.  相似文献   

6.
The evolution of east coast of India sis discussed within the ambit of clearly identifiable four major tectonic stages which had a profound effect in shaping the tectonic grain of the east coast basins. The evolutionary process began with rift related crustal extension between India and Sri Lanka as a consequence of Africa-Antarctica rifting and development of Natal Basin. An arm of this rift led to initial extension in the Cauvery Basin and failed. Later, the India-West Australia rift propagated further in southwesterly direction initiating Mahanadi and Krishna-Godavari Basins. This extension was an oblique one with Nayudupeta high acting as pivot. The oblique extension followed by asymmetric seafloor spreading developed transpression along India-Sri Lanka and Antarctica junction, resulting in a NNW-SSE trending transcurrent fault along which Antarctica moved southward. Subsequently, entire east coast evolved through a more or less uniform post rift stage.  相似文献   

7.
The Southwest Indian mid-ocean ridge (SWIR) is an ultraslow spreading ridge. Based on the submarine bathymetric data, we develop a new division principle on submarine morphotectonics and subdivide the SWIR into the seven-order tectonic geomorphologic units. Taking its submarine morphotectonics in the middle segment and adjacent seafloors of the mid-ocean ridge between Discovery II and Gallieni transform faults as a sample, this paper systematically analyzes its tectonic evolution, segmentation, segmentation and propagation mechanism, the formation of the central rift valley, the ridge-plume interactions, and the ocean ridge jumping. The results showed that the mid-ocean ridges can be divided into four three-order morphotectonics units (i.e., one-order segments of mid-ocean ridge), from west to east, which are separated by the Andrew Bain, the Prince Edwards, the Discovery II, and the Gallieni transform faults, respectively, corresponding to ridge landforms associated with a strongly hotspot-affected ridge, a weakly hotspot-affected ridge, and a normal ultraslow spreading ridge. Each segment can be further subdivided into three or four secondary segments. This paper focuses only on the segmentation and division from fourth-order to seventh-order morphotectonics units between the Discovery II and the Gallieni transform faults (i.e., the fourth-order morphotectonics unit of mid-ocean ridges can be subdivided into other three secondary units). Here the seventh-order morphotectonics unit consists of segments of laterally-aligned rifts (shear zone), en echelon rifts, and other transverse-faulting structures. The mid-ocean ridge segment experienced three oceanic ridge jumping at about 80 Ma, 60 Ma and 40 Ma, respectively, which were affected by the Marion and Crozet hotspots, or the Madagascar Plateau, etc. The oceanic processes of the SWIR are related to the Gondwana breakup, and its tectonic processes has been analyzed in detail as the periodic pull-apart extension, domino-style half-graben, graben subsidence, oceanic core complex, etc. in axial mid-oceanic ridge since 20 Ma. ©, 2015, Science Press. All right reserved.  相似文献   

8.
Gras  Rutger  Geluk  Mark 《Geologie en Mijnbouw》1999,78(1):1-19
Analysis of the Upper Cretaceous stratigraphy of the Peel Block reveals the basin development of the block to have been influenced by both the inversion of the Roer Valley Graben and Central Netherlands Basin, and the overall Late Cretaceous transgression. Sediments of Santonian to Danian age were deposited on the block. These sediments are compared with the detailed lithostratigraphy of southern Limburg, where Late Cretaceous strata are exposed. Four successions can be recognised in southern Limburg. The two oldest successions, the Santonian Oploo Formation (new name, proposed in the present contribution) and the mainly Early Campanian Vaals Formation, are restricted to the central and northern parts of the block. These siliciclastic formations were deposited under the influence of inversion of the Roer Valley Graben and the Central Netherlands Basin, as well as under the influence of a rising sea level. Towards the north, sands of the Oploo Formation grade into marls and chalks of the Ommelanden Formation. The two youngest successions comprise the largely Late Campanian to Maastrichtian Gulpen and Maastricht Formations and the Danian Houthem Formation. These chalk formations were deposited under the influence of regional subsidence during a sea-level highstand. Subsequent to deposition of the Houthem Formation, a regional regression triggered a change from shallow-marine carbonate to paralic siliciclastic deposition.  相似文献   

9.
Amphibolites, one of the kinds of Precambrian basement rocks, are exposed in the south-middle Zanhuang Metamorphic Complex, central-south segment of the Trans-North China Orogen. These metamorphic rocks were carefully studied through field investigations and petrographical and geochemical analyses. It was found that protoliths of the Zanhuang amphibolites are calc-alkaline and tholeiitic rocks with a large range of ΣREE (41.38 × 10-6 -232.55 × 10-5 ) and weak LREE enrichment. The multi-element variation results showed that K, Rb and Ba were relatively concentrated, Nb and Ta were of evident depletion while Ti was of weak depletion. Geochemical characteristics and various relevant geochemical discrimination diagrams showed that the Zanhuang amphibolites were formed in volcanic arcs of continental margin similar to the current continental margin, which was resulted from the subduction between the Western Block and the Eastern Block.  相似文献   

10.
11.
Northeastern China is suited in the eastern part of the Central Asian Orogenic Belt, and it is mainly composed of Erguna Massif, Xing'an Massif, Songnen-Zhangguangcai Range Massif, Jiamusi Massif, and Nadanhada Terrane. The Late Paleozoic magmatism was relatively intense accompanied with multiple stages of amalgamation in several microcontinents, therefore these magmatic products are an important media in recording the Late Paleozoic tectonic evolution history of the northeastern China. According to the petrological, geochronological, and geochemical characteristics of Late Paleozoic igneous rocks in the northeastern China, we found that the Late Paleozoic magmatism was based on Carboniferous -Permian igneous rocks. The Early Carboniferous magmatic products are gabbro, diorite and granite, the Late Carboniferous magmatic products are mainly composed of granitoids with minor gabbro, and the Permian magmatic products are mainly granitoids. Meanwhile, these Late Paleozoic igneous rocks mostly exhibit typical arc characteristics. In addition, the Late Paleozoic igneous rocks in eastern Jilin and Heilongjiang provinces are mainly Permian granitoids with minor gabbro, and these Permian igneous rocks show typical arc characteristics. Combined with petrological, geochronological, geochemical and isotopic characteristics, we suggest that the Late Paleozoic igneous rocks in the Great Xing'an Range and eastern Jilin and Heilongjiang provinces underwent different magmatic evolution history, and the microcontinents in NE China had different crustal growth history.  相似文献   

12.
Variations in the O, Sr, Nd, and Hf isotopic compositions in rocks of various ages, minerals, and mantle temperature in the geological history are considered. Two periods in the Earth’s history are studied: the beginning of the formation of the planet until the turn of (3.4) 2.7–2.5 Ga and the tectonic movement period in the last 2 Ga, and also the transitional period within 2.7–2.0 Ga.  相似文献   

13.
The geology of Northern Vietnam offers critical clues on the convergence history between the South China and Indochina blocks. We constrain the tectonic evolution of the South China and Indochina blocks using geochemical, mineral chemical and geochronological data collected from mafic–ultramafic rocks exposed in the Cao Bang area, Northeastern Vietnam. These rocks show significant enrichment in large ionic lithophile elements (LILEs) such as Cs, Rb, Ba, Th, U, and Pb and depletion in high field strength elements (HFSEs) such as Nb, Ta, Zr, and Ti showing [Nb/La]N between 0.28–0.41, [La/Yb]N = 3.94–10.00 and Zr/Y = 2.0–4.4. These geochemical features as well as the petrology and mineral chemistry of the Cao Bang mafic–ultramafic magmas are comparable to those of magmatic complexes formed in a back-arc environment. The basalts yield Rb–Sr whole rock ages of 263 ± 15 Ma, that are consistent with the zircon U–Pb and K–Ar ages reported in previous studies from the same area. The spatial and temporal distribution of the arc magmas within the Indochina block and along the southern margin of the South China block suggest that the Permo-Triassic mafic–ultramafic magmas formed during a tectonic event that is different from the subduction and collision event between the Indochina and South China blocks.  相似文献   

14.
15.
Petrophysical characteristics are determined for the rock complexes of the Okhotsk margin within the continent–ocean transition zone. Petrophysical maps showing the major inhomogeneities of the main tectonic elements of the studied area are constructed. Petrophysical inhomogeneities and the corresponding geophysical field anomalies are compared. A relationship between the magnetic field anomalies and subsurface rock complexes is revealed. The gravity field anomalies are related to deep inhomogeneities and are almost independent of the subsurface rock complexes of relatively low thickness.  相似文献   

16.
霍宁  郭谦谦  陈艺超  宋东方 《岩石学报》2022,38(4):1253-1279
增生造山带中陆源碎屑岩物源区特征的研究可为解剖造山带结构甚至大陆地壳的形成和演化提供关键证据。北山造山带中部的古硐井群被认为是前寒武纪稳定沉积盖层,是北山造山带存在微陆块的重要依据。本文围绕古硐井群的物源区特征,进行了碎屑颗粒和重矿物统计、全岩主微量元素地球化学分析、碎屑锆石U-Pb年代学和Hf同位素测试。古硐井群碎屑岩的碎屑颗粒多呈棱角状,主要为石英、长石,同时含大量硅质岩碎屑和一定数量的火山岩碎屑;重矿物组成以褐铁矿、锆石、白钛石、尖晶石为主,角闪石、电气石、辉石次之,暗示物源区可能存在蛇绿岩、增生杂岩。全岩主量元素以高硅、高铝、富碱、低锰为特征,结合REE、Cr、Co、Sc和Th等惰性元素含量特征共同指示了长英质的物源区。最年轻的碎屑锆石年龄为443.9±13Ma,表明古硐井群最大沉积时限为晚奥陶世。碎屑锆石的年龄高度集中于470Ma附近,且该区间锆石εHf(t)值多为正值,指示物源区存在大量新生地壳物质。本文推测古硐井群可能形成于增生楔楔顶盆地;研究结果支持北山造山带是古生代持续增生造山的产物这一认识。  相似文献   

17.
The nature of the Namco–Renco ophiolites in the northern Lhasa subterrane is widely disputed. To investigate their formation age, petrogenesis, and tectonic setting, the harzburgites, basalts, and metagabbros of the Namco ophiolite and the harzburgites, lherzolites, gabbros, and diabasic dikes of the Renco ophiolite were selected for whole-rock geochemical and zircon U-Pb dating and in situ Lu-Hf isotopic analyses. The geochemical and geochronological data indicate that the Namco metagabbros were generated at 178.0 ± 2.9 Ma, along with the Namco–Renco peridotites formed in the initial stage of a continental margin basin; whereas the Renco gabbros were developed at 149.7 ± 1.6 Ma, along with the Renco diabasic dikes and Namco basalts formed later in a mature back-arc basin. The Namco–Renco ophiolites were derived from a depleted mantle source with involvement of minor older crustal materials. Combined with the regional geological background, the Namco–Renco ophiolites were likely formed mainly associated with the southward subduction of the Bangong–Nujiang oceanic lithosphere beneath the Lhasa terrane. This study provides new constraints on the formation ages of the Namco–Renco ophiolites and the tectonic evolution of the Namco–Renco Ocean.  相似文献   

18.
The Makran accretionary wedge has a much larger number of mud volcanoes then those reported earlier. Using high-resolution satellite images, over 70 active mud volcanoes were identified. These mud volcanoes occur within a well-defined zone; we call it the Makran zone of active mud volcanoes (MZAMV), which is parallel to the regional trend of the accretionary wedge. Mud volcanoes within the zone occur as clusters, which form linear belts parallel to the regional thrusts associated with anticlines. The MZAMV zone also includes the offshore mud volcanoes occurring in the shallow shelf area, including the recurrently emerging mud islands. Several occurrences of thick deposits of old mud volcanoes (Pleistocene or even older) are also present within this zone, which also display recognizable features that are characteristic of the fossil mud volcanoes. We propose that the MZAMV developed and evolved in response to the continued compression within the Makran accretionary wedge, which in turn, is a response of the subduction process. Mud diapirism has been an ongoing phenomena since Pleistocene or even earlier. The events of enhanced mud extrusion in mud volcanoes and/or emergence of island(s) have relevance with seismic phenomena and, therefore, may be closely monitored.  相似文献   

19.
20.
This paper gives a brief review of what I consider as the state of the art regarding the largely accepted data and ideas concerning the Proterozoic to Early Paleozoic tectonic evolution of South China. The South China craton was built by the welding of the Yangtze and Cathaysia blocks, with a different previous history giving a different pre-Neoproterozoic basement composition, due to the Jiangnan (Jinning, Sibao) orogeny. This Jiangnan orogeny was a collisional event, induced by the consumption of an intervening oceanic domain by subduction beneath the Yangzte plate. The evolution involved a volcanic arc on the Yangtze active margin, active from ca. 980 Ma to ca. 850 Ma, the subsequent collision beginning at around 870–860 Ma and responsible for the emplacement of thrust sheets of ophiolitic mélange (dated around 1000–900 Ma) and blueschists (900–870 Ma), followed by late- to post-collisional granitic plutonism (840–800 Ma). The newly amalgamated South China craton suffered from rifting, starting around 850 Ma, marked by mafic–ultramafic magmatism until ca. 750 Ma. The Nanhua rift basin evolved with a thick sedimentation in its middle part until the Ordovician. South China was affected by the Early Paleozoic orogeny (mainly Silurian), characterized by a strong quasi-symmetrical intracontinental shortening, involving the sedimentary cover of the rift and its margins as well as the basement, leading to crustal thickening. This crustal thickening induced an important anatexis and emplacement of peraluminous granites during the Silurian. Unlike the Jiangnan orogeny, which was of collisional type, the Early Paleozoic one was a bit similar to a Pyrenean intracontinental type.Some pending problems need further research for clarification, for example: the location and timing of integration of South China within Rodinia, the triggering factor of the Early Paleozoic orogeny, the mapping of the contacts bounding the Lower Paleozoic thrust sheets responsible for the crustal thickening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号