首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Precambrian Research》2006,144(3-4):213-238
We report new palaeomagnetic results from a ca. 1300 to 800 Ma continental shelf succession on the southern margin of the North China Block. A total of 386 oriented core samples were subjected to stepwise demagnetisation. Two overprint components (‘A’ and ‘B’) were identified, with ‘A’ being a Recent geomagnetic field component and ‘B’ a likely Mesozoic remagnetisation related to collision of the North and South China Blocks. An interpreted primary remanence was isolated from six rock units. The most reliable results are as follow, in the order of stratigraphic ascendance. (1) Purple mudstone, muddy sandstone and andesite of the lower Yunmenshan Formation (Rb–Sr age ca. 1270 Ma) yields a high-temperature component that passes both reversal and fold tests and gives a palaeopole at (60.6°S, 87.0°E, A95 = 3.7°). (2) Mudstone in the overlying Baicaoping Formation yields a high-temperature component with a palaeopole at (43.0°S, 143.8°E, A95 = 11.1°). (3) Purple sandstone of the earliest Neoproterozoic Cuizhuang and Sanjiaotang Formations exhibits a high-temperature component that provides a palaeopole at (41.0°S, 44.8°E, A95 = 11.3°). Based on both our new results and a critical selection of available palaeomagnetic data, we construct a preliminary apparent polar wander path (APWP) for the North China Block between 1300 and 510 Ma. Regardless of alternative polarity options applicable to these poles, North China was located within equatorial latitudes for much of this interval. Comparing the North China poles with coeval poles from Laurentia suggests that the two continents were situated on the same plate between 1200 and 700 Ma. North China was thus likely part of the supercontinent Rodinia. Separation of North China and Laurentia occurred between 650 and 615 Ma.  相似文献   

2.
《Gondwana Research》2014,25(1):159-169
The Ediacaran–Early Ordovician interval is of great interest to paleogeographer's due to the vast evolutionary changes that occurred during this interval as well as other global changes in the marine, atmospheric and terrestrial systems. It is; however, precisely this time period where there are often wildly contradictory paleomagnetic results from similar-age rocks. These contradictions are often explained with a variety of innovative (and non-uniformitarian) scenarios such as intertial interchange true polar wander, true polar wander and/or non-dipolar magnetic fields. While these novel explanations may be the cause of the seemingly contradictory data, it is important to examine the paleomagnetic database for other potential issues.This review takes a careful and critical look at the paleomagnetic database from Baltica. Based on some new data and a re-evaluation of older data, the relationships between Baltica and Laurentia are examined for ~ 600–500 Ma interval. The new data from the Hedmark Group (Norway) confirms suspicions about possible remagnetization of the Fen Complex pole. For other Baltica results, data from sedimentary units were evaluated for the effects of inclination shallowing. In this review, a small correction was applied to sedimentary paleomagnetic data from Baltica. The filtered dataset does not demand extreme rates of latitudinal drift or apparent polar wander, but it does require complex gyrations of Baltica over the pole. In particular, average rates of APW range from 1.5° to 2.0°/Myr. This range of APW rates is consistent with ‘normal’ plate motion although the total path length (and its oscillatory nature) may indicate a component of true polar wander. In the TPW scenario, the motion of Baltica results in a back and forth path over the south pole between 600 and 550 Ma and again between 550 and 500 Ma. The rapid motion of Baltica over the pole is consistent with the extant database, but other explanations are possible given the relative paucity of high-quality paleomagnetic data during the Ediacaran–Cambrian interval from Baltica and other continental blocks.A sequence of three paleogeographic maps for Laurentia and Baltica is presented. Given the caveats involved in these reconstructions (polarity ambiguity, longitudinal uncertainty and errors), the data are consistent with geological models that posit the opening of the Iapetus Ocean around 600 Ma and subsequent evolution of the Baltica–Laurentia margin in the Late Ediacaran to Early Ordovician, but the complexity of the motion implied by the APWP remains enigmatic.  相似文献   

3.
A new CA-ID TIMS U–Pb age of 130.39 ± 0.16 Ma is presented here from the Pilmatué Member of the Agrio Formation, lower Hauterivian of the Neuquén Basin in west-central Argentina. This high precision radioisotopic new age, together with the two former ones from the upper Hauterivian Agua de la Mula Member of the Agrio Formation and modern cyclostratigraphic studies in the classical sections of the Mediterranean Province of the Tethys indicate that the Hauterivian Stage spans some 6 Ma, starting ca. 132 Ma and ending ca. 126 Ma. These radioisotopic ages are tied to ammonite biostratigraphy and calcareous nannofossil bioevents and biozones recognized in the Neuquén Basin which in turn are correlated with the Mediterranean standard zones. A new geological time scale for the Valanginian–Hauterivian stages in the Mediterranean region integrating astrochronological and radiochronological data differs with the current official geological time scale which still maintains poorly constraint absolute ages for the Berriasian-Aptian interval.  相似文献   

4.
Paleomagnetic results from 107 samples of the Chugwater Group near Lander, Wyoming, show a regular progression in pole positions from bottom to top of the sequence. This pole position trend of about 25° matches very well the North American apparent polar wander path between Early Permian and Early Triassic. It could be argued that this “agreement” results in a conflict between the apparent magnetic age (Permian) and the Early to Late Triassic age generally assigned to the Chugwater Group. However, similar progressions of paleomagnetic pole positions have been reported for the Early Triassic Moenkopi Formation in Colorado; thus it appears that long-term variations and swings characterized the geomagnetic field at that time. With detailed paleomagnetic sampling, these features can be utilized for stratigraphic correlation in addition to magnetic-reversal stratigraphy. This will eliminate, to some degree, part of the non-uniqueness inherently present in correlations based on reversal stratigraphy only.  相似文献   

5.
Dolostones of the ∼1200 Ma Society Cliffs Formation within the hydrothermal zone surrounding the Nanisivik zinc deposits retain a stable characteristic remanent magnetization (ChRM) on alternating field and thermal step demagnetization. Based on the thermal data and saturation isothermal remanence analyses, the ChRM resides in pseudosingle domain magnetite and hematite. A paleomagnetic fold test favours a post-folding ChRM, and a paleomagnetic contact test, using a Franklin gabbro dike, indicates that the ChRM predates ∼720 Ma. The pole position calculated from the ChRM direction is at 168.2°E, 42.8°N (δp=4.9°, δm=6.8°), giving an age of 1095 ± 10 Ma on the well-defined “Logan Loop” portion of the North American apparent polar wander path. This age is considered to date recrystallization of the dolostone host rocks in the halo around the hydrothermal sulfide deposits. No evidence is found for a postulated Cretaceous remagnetization event in the region. Received: 9 January 1999 / Accepted: 3 March 2000  相似文献   

6.
We present a comprehensive paleomagnetic study on Paleoproterozoic (2173–2060 Ma) plutonic and metamorphic rocks from French Guiana, representative of the full range of the main Transamazonian tectonothermal steps. Twenty-seven groups of directions and poles were obtained from combination of 102 sites (613 samples) based on age constraint, similar lithology and/or geographical proximity. Paleomagnetic results show variations between rocks of different ages which are supposed to be characteristic of magnetizations acquired during uplift and cooling of successive plutonic pulses and metamorphic phases. This is also reinforced by positive field tests (baked contact and reversal tests). Recent U/Pb and Pb/Pb on zircon and complementary 40Ar/39Ar on amphibole and biotite allow questioning the problem of magnetic ages relative to rock formation ages. Estimated magnetic ages, based on amphibole dating as a proxy, enable us to construct a Guiana Shield apparent polar wander path for the 2155–1970 Ma period. It is also possible to present paleolatidudinal evolution and continental drift rates related to specific Transamazonian tectonic regimes.French Guiana and probably the Guiana Shield were located at the Equator from ca. 2155 to 2130 Ma during the Meso-Rhyacian D1 magmatic accretion phase, related to subduction of Eorhyacian oceanic crust. After closure of the Eorhyacian Ocean and collision of West African and Amazonian plates, the Guiana Shield moved. The first evolution towards 60° latitude, occurs after 2080 Ma, during the Neorhyacian D2a post collisional sinistral transcurrent phase. During the Late Rhyacian D2b phase, up to 2050 Ma, the Guiana Shield reaches the pole and starts to move to lower latitudes on an opposite meridian. By the Orosirian D2c phase, from ca. 2050 to 1970 Ma, the Guiana Shield reaches the Equator.Based on the amphibole 40Ar/39Ar dates, we estimate the continental drift between 12 and 16 cm/y for the Meso to Late Rhyacian period followed by a lower rate between 9 and 14 cm/y up to Orosirian time. This study highlights rock ages and magnetic ages are prerequisite to any continental reconstruction especially when it is shown continental drift is important for a 100–200 Ma time period. Our results confirm the possibility of APWP construction on Paleoproterozoic plutonic rocks but suggest improvement will rely on the combination with multidisciplinary approaches such as structural geology and multi-method radiometric dating.  相似文献   

7.
Timing of the Nihewan formation and faunas   总被引:2,自引:0,他引:2  
Magnetostratigraphic dating of the fluvio-lacustrine sequence in the Nihewan Basin, North China, has permitted the precise timing of the basin infilling and associated Nihewan mammalian faunas. The combined evidence of new paleomagnetic findings from the Hongya and Huabaogou sections of the eastern Nihewan Basin and previously published magnetochronological data suggests that the Nihewan Formation records the tectono-sedimentary processes of the Plio-Pleistocene Nihewan Basin and that the Nihewan faunas can be placed between the Matuyama-Brunhes geomagnetic reversal and the onset of the Olduvai subchron (0.78-1.95 Ma). The onset and termination of the basin deposition occurred just prior to the Gauss-Matuyama geomagnetic reversal and during the period from the last interglaciation to the late last glaciation, respectively, suggesting that the Nihewan Formation is of Late Pliocene to late Pleistocene age. The Nihewan faunas, comprising a series of mammalian faunas (such as Maliang, Donggutuo, Xiaochangliang, Banshan, Majuangou, Huabaogou, Xiashagou, Danangou and Dongyaozitou), are suggested to span a time range of about 0.8-2.0 Ma. The combination of our new and previously published magnetostratigraphy has significantly refined the chronology of the terrestrial Nihewan Formation and faunas.  相似文献   

8.
秦岭岩群为北秦岭微陆块的主要组成部分,其时代的准确厘定对秦岭造山带构造演化研究具有重要的地质意义。本次工作对五里川—寨根一带秦岭岩群雁岭沟岩组钠长二云片岩和郭庄岩组矽线二云二长片麻岩进行碎屑锆石LA-ICP-MS U-Pb同位素年代学研究。钠长二云片岩具有岩浆成因特征的碎屑锆石核部年龄主要存在545~551 Ma、754~778 Ma、900~1000 Ma、1340~1830 Ma和2300~2500 Ma 5个年龄段,并以900~1000 Ma段碎屑锆石的峰最明显;部分数据点在锆石U-Pb谐和图上拟合成一条上交点年龄为(2478±25)Ma的不一致线。矽线二云二长片麻岩年龄主要集中于1400~1800 Ma,另有4颗锆石年龄为1134~1243 Ma,其中最年轻的1颗碎屑岩浆锆石年龄为(1134±17)Ma。根据分析结果,推断本地区雁岭沟岩组的形成时代应晚于900 Ma,早于438 Ma的五垛山岩体。郭庄岩组的主体形成于中元古代晚期,时代应该晚于1122 Ma,老于962 Ma的新元古代花岗岩类。雁岭沟岩组最主要的物质来源为新元古代花岗岩,其次为新太古代—古元古代陆壳,少部分来源于郭庄岩组;郭庄岩组物质来源主要为的古元古代晚期至中元古代早期的花岗岩陆壳。雁岭沟岩组与郭庄岩组形成时代不同,二者之间存在沉积间断,主要物源区也不相同,雁岭沟岩组中甚至有少量郭庄岩组剥蚀后再沉积的物质。因此,二者是不同的构造岩片,本地区雁岭沟岩组应从秦岭岩群中解体出来。  相似文献   

9.
More than half of the approximately 650 paleopoles reported from all Precambrian cratons have been obtained from North America. The observations have spurred a proliferation of apparent polar wander paths to support different hypotheses for the tectonic evolution of the continent. Many of the reasons for this development can be traced to the inadequacy of the data base with its average of only 1.6 poles 10 Ma?1 (as compared to 7 poles 10?1 Ma for the last 300 Ma). Even when it is assumed that a ·primary’ pole has been derived from each rock unit sampled, the total number of ·primary’ poles (excluding the 900–1200 Ma interval) yields an average of only 0.4 pole 10 Ma?1. An inspection of the data base shows a non-systematic sampling of a non-continuous (fragmented) paleomagnetic record with gaps as large as tens and even hundreds of Ma. More importantly, a search through the literature reveals that very few poles have an age known to better than 50 Ma and for many poles the age bracket could be as large as a few hundreds of Ma. This is partly owing to the fact that radiometric and paleomagnetic sites rarely originate from the same localities. It is shown that this limited data base with all its deficiencies and uncertainties cannot be used to support certain hypotheses, or for the drawing of a meaningful apparent polar path for the whole of the Precambrian. It appears that, because of the enormous time scale, Precambrian paleomagnetism should rather be directed towards the construction of segments of polar paths such as those in the 900–1200 Ma interval. Comparison of well dated contemporaneous segments from different parts (or structural provinces) could be used most effectively to delineate relative movements, if any, and reconstruct the mosaic of the past continent for certain time intervals. One of the recent developments of Precambrian paleomagnetism has been to show that the apparent pole did not remain constrained to the equatorial region, but made several excursions into high latitudes.  相似文献   

10.
New structural, geochronological and paleomagnetic data were obtained on dolerite dikes of the Nola region (Central African Republic) at the northern border of the Congo craton. In this region, metavolcanic successions were thrust southward onto the craton during the Panafrican orogenic events. Our structural data reveal at least two structural klippes south of the present-day limits of the Panafrican nappe suggesting that it has once covered the whole Nola region, promoting the pervasive hydrothermal greenschist metamorphism observed in the underlying cratonic basement and also in the intrusive dolerite dikes. Paleomagnetic measurements revealed a stable dual-polarity low-inclination magnetization component in nine dikes (47 samples), carried by pyrrhotite and magnetite. This component corresponds to a paleopole at 304.8°E and 61.8°S (dp = 5.4, dm = 10.7) graded at Q = 6. Both metamorphism and magnetic resetting were dated by the 40Ar/39Ar method on amphibole grains separated from the dikes at 571 ± 6 Ma. The Nola pole is the first well-dated paleomagnetic pole for the Congo craton between 580 and 550 Ma. It marks a sudden change in direction of the Congo craton apparent polar wander path at the waning stages of the Panafrican orogenic events.  相似文献   

11.
We present a Late Cretaceous (81 Ma) pole position for the Pacific plate derived from paleomagnetic analyses of basalt samples from Detroit Seamount (of the Hawaiian–Emperor seamounts) that were oriented using Brunhes-age overprints. This pole is at much higher latitudes than the previously published Late Cretaceous pole positions based on the modeling of magnetic anomalies observed during marine surveys over seamounts. Our new pole suggests that the Pacific plate would have moved rapidly between 95 and 81 Ma at speeds as high as 19.8 (−10.8/+11.2) cm/year. The Pacific plate at this time was smaller than the present-day plate and had a substantial subducting boundary. The high-velocity estimates are comparable with those of other paleoplates having similar characteristics. Therefore, plate tectonic driving forces can explain the motion and there is no need to invoke true polar wander. Decreases in mantle drag associated with vigorous Late Cretaceous volcanism in the Pacific, however, may have contributed to the rapid plate speed. The new pole position, together with other reliable paleomagnetic indicators of Pacific apparent polar wander, further supports the notion of drift of the Hawaiian hotspot during the Late Cretaceous.  相似文献   

12.
Glacigenic diamictite successions of the Macaúbas Group are widespread in the western domain of the Araçuaí orogen, east of the São Francisco craton (Brazil). Diamictites also occur on this craton and in the African counterpart of the Araçuaí orogen, the West Congo belt. Detrital zircon grains from the matrix of diamictites and sandstones from the Macaúbas Group were dated by the U–Pb SHRIMP technique. The geochronological study sets the maximum depositional age of the glacial diamictites at 900 Ma, and indicates multiple sources for the Macaúbas basin with ages ranging from 900 to 2800 Ma. Sm–Nd TDM model ages, determined on whole rock samples, range from 1.8 Ga to 2.5 Ga and get older up-section. Comparison of our data with those from the cratonic area suggest that these glacial deposits can be correlated to the Jequitaí and Carrancas diamictites in the São Francisco craton, and to the Lower Mixtite Formation of the West Congolian Group, exposed in Africa. The 900–1000 Ma source is most probably represented by the Zadinian–Mayumbian volcanic rocks and related granites from the West Congo belt. However, one of the most voluminous sources, with ages in the 1.1–1.3 Ga interval, has not been detected in the São Francisco-Congo craton. Possible sources for these grains could occur elsewhere in Africa, or possibly from within the Brasília Belt in western central Brazil.  相似文献   

13.
An integrated radio-astrochronological framework of the Agrio Formation in the Andean Neuquén Basin of west-central Argentina provides new constraints on the age and the duration of the late Valanginian through Hauterivian stratigraphic interval. A CA-ID TIMS U-Pb age of 126.97 ± 0.04(0.07)[0.15] Ma is presented here from the upper Hauterivian Agua de la Mula Member of the Agrio Formation. Biostratigraphic data from ammonoids and calcareous nannofossils and this high precision new radioisotopic age, together with three former ones from the same Agrio Formation are combined with new astrochronological data in the Andes. These are correlated with modern cyclostratigraphic studies in the classical sections of the Mediterranean Province of the Tethys, supporting detailed interhemispheric correlations for the Early Cretaceous. We also provide new δ13C data from the Agrio Formation which are compared with records from the classic Tethyan sections. According to our calibration, the minimum in the values in the mid-Hauterivian appears to be synchronous and, thus, another important stratigraphic marker for global correlation. A new duration of 5.21 ± 0.08 myr is calculated for the Hauterivian Stage, starting at 131.29 ± 0.19 Ma and ending at 126.08 ± 0.19 Ma. The difference between the duration of the Hauterivian in GTS2016 and in this study is 1.32 myr while the base and top of the GTS2016 Hauterivian differ respectively by 3.40 and 4.69 myr.  相似文献   

14.
特提斯喜马拉雅北亚带江孜地区上古新统-下始新统甲查拉组记录了喜马拉雅碰撞造山带的早期地壳加厚和沉积历史。本文我们报道了甲查拉组详细的碎屑锆石U-Pb年龄和全岩Sm-Nd同位素数据。甲查拉组由青灰色厚层的岩屑砂岩夹泥岩组成,不整合覆盖在宗卓组之上,碎屑锆石主要的峰值介于350~80 Ma, 900~470 Ma以及1 300~950 Ma,次要的峰值介于2 800~1 500 Ma。全岩87Sr/86Sr介于0.707 505~0.713 174,143Nd/144Nd介于0.512 206~0.512 355,εNd(0)介于-5.52~-8.43。甲查拉组物源区以再循环的日喀则弧前盆地和上三叠统郎杰学群为主,少量物质来自雅鲁藏布江缝合带。上述研究表明,甲查拉组沉积在周缘前陆盆地的背景下,且特提斯喜马拉雅北亚带在始新世期间经历了明显的地壳加厚。  相似文献   

15.
A paleomagnetic study of the late Middle to possibly early Late Cambrian Liberty Hills Formation in the Ellsworth Mountains, Antarctica, reveals a stable magnetization with positive fold and reversal tests. The paleopole is based on 16 sites from volcanic and sedimentary rocks and lies at lat 7.3 degrees N and long 326.3 degrees E (A95=6.0&j0;). The new paleomagnetic data support the view that the Ellsworth Mountains are part of a microplate-the Ellsworth-Whitmore Mountains crustal block-that rotated independently of the main Gondwana continental blocks during breakup. The Liberty Hills pole differs from both previous poles recovered from Cambrian rocks in the Ellsworth Mountains and from the available Gondwana reference pole data. Our pole indicates a more northerly prebreakup position for the Ellsworth Mountains than previously suggested, contradicting the overwhelming geologic evidence for a prebreakup position close to southern Africa. The reasons for this are uncertain, but we suggest that problems with the Gondwana apparent polar wander path may be important. More well constrained, early Paleozoic paleomagnetic data are required from the Ellsworth Mountains and the Gondwana continents if the data are to constrain further the Middle-Late Cambrian location of the Ellsworth-Whitmore Mountains block.  相似文献   

16.
The time‐scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel‐bearing granulites from Vizianagaram, Eastern Ghats Province (EGP), India, were investigated to provide P–T–time constraints using petrography, phase equilibrium modelling, U–Pb geochronology, the rare earth element composition of zircon and monazite, and Ti‐in‐zircon thermometry. These ultrahigh temperature (UHT) granulites preserve discrete compositional layering in which different inferred peak assemblages are developed, including layers bearing garnet–sillimanite–spinel, and others bearing orthopyroxene–sillimanite–spinel. These mineral associations cannot be reproduced by phase equilibrium modelling of whole‐rock compositions, indicating that the samples became domainal on a scale less than that of a thin section, even at UHT conditions. Calculation of the P–T stability fields for six compositional domains within which the main rock‐forming minerals are considered to have attained equilibrium suggests peak metamorphic conditions of ~6.8–8.3 kbar at ~1,000°C. In most of these domains, the subsequent evolution resulted in the growth of cordierite and final crystallization of melt at an elevated (residual) H2O‐undersaturated solidus, consistent with <1 kbar of decompression. Concordant U–Pb ages obtained by SHRIMP from zircon (spread 1,050–800 Ma) and monazite (spread 950–800 Ma) demonstrate that crystallization of these minerals occurred during an interval of c. 250 Ma. By combining LA‐ICP‐MS U–Pb zircon ages with Ti‐in‐zircon temperatures from the same analysis sites, we show that the crust may have remained above 900°C for a minimum of c. 120 Ma between c. 1,000 and c. 880 Ma. Overall, the results suggest that, in the interval 1,050 to 800 Ma, the evolution of the Vizianagaram granulites culminated with UHT conditions from c. 1,000 Ma to c. 880 Ma, associated with minor decompression, before further zircon crystallization at c. 880–800 Ma during cooling to the solidus. However, these rocks are adjacent to the Paderu–Anantagiri–Salur crustal block to the NW that experienced counterclockwise P–T–t paths, and records similar UHT peak metamorphic conditions (7–8 kbar, ~950°C) followed by near‐isobaric cooling, and has a similar chronology during the Neoproterozoic. The limited decompression inferred at Vizianagaram may be explained by partial exhumation due to thrusting of this crustal block over the adjacent Paderu–Anantagiri–Salur crustal block. The residual granulites in both blocks have high concentrations of heat‐producing elements and likely remained hot at mid‐crustal depths throughout a period of relative tectonic quiescence in the interval 800–550 Ma. During the Cambrian Period, the EGP was located in the hinterland of the Denman–Pinjarra–Prydz orogen. A later concordant population of zircon dated at 511 ± 6 Ma records crystallization at temperatures of ~810°C. This age may record a low‐degree of melting due to limited influx of fluid into hot, weak crust in response to convergence of the Crohn craton with a composite orogenic hinterland comprising the Rayner terrane, EGP, and cratonic India.  相似文献   

17.
Widespread Cenozoic sediments in and around the Tibetan Plateau (TP) are thought to have played an important role in explaining the process of the India-Asia collision as well as its interactions with global and regional paleoclimate. However, high-resolution temporal frameworks of sedimentary sequences and controls on geological and climatic events are still absent. To study the abovementioned issues, we investigate the Oligocene-Miocene lacustrine sequences (the Dingqinghu Formation) of the Lunpola Basin, central TP. In this work, cyclostratigraphic analyses are conducted with gamma ray log and pollen data to establish a high resolution temporal framework ranging from ca. 25.4 to 18.0 Ma for the sections. Along these sections, sediment accumulation rates are calculated with orbital signals to monitor clastic input of the lake basin; elemental, palynological, and isotopic data are summarized to depict the paleoclimate and paleoelevation evolution of this drainage system. Integrating all these clues together, we sort out a chronological list of events including lake basin, tectonics, and paleoclimate: regional uplift took place at 23.7 Ma; simultaneously, a distinct lake-basin transition characterized by accelerated sediment accumulation rate is recognized; about 0.2 Ma later at 23.5 Ma, catchment scale drought occurred and maintained to the end of the sections. Our results demonstrate that paleoclimate did not impose decisive influence on the late Oligocene-early Miocene evolution of the lake basin; instead, regional uplift and its associated accelerated exhumation of the source area resulted in the lake-basin transition and paleoclimatic drought. After reviewing the Oligocene-Miocene sedimentary records distributed in and around the TP, we argue that the 23.7 Ma geological event of the Lunpola Basin is probably not a single case but a regional effect of a dramatic tectonic transition of the plateau.  相似文献   

18.
The Songliao Basin in Northeast Asia is the largest and longest-lived rift basin and preserves a near-continuous continental succession of the most of the Cretaceous period, providing great material to investigate the adaption of the terrestrial systems to the Cretaceous greenhouse climate and tectonic events. However, the paucity of precise and accurate radioisotopic ages from the Early Cretaceous strata of the Songliao Basin has greatly held back the temporal and causal correlation of the continental records to the global Early Cretaceous records. Three tuff layers intercalated in the Yingcheng Formation have been intercepted by the SK-2 borehole, which offer excellent materials for radioisotopic dating and calibration of the chronostratigraphy of the Lower Cretaceous sequence of Songliao Basin. Moreover, the Yingcheng Formation recorded the largest and the last of the two major volcanic events in Songliao Basin, which also represents a turning point in the basin evolution history of Songliao from syn-rift stage to post-rift stage. Here we report high-precision U–Pb zircon geochronology by the CA-ID-TIMS technique on three tuff samples from the Yingcheng Formation of the SK-2 borehole in the Songliao Basin to construct a greatly improved, absolute age framework for the Yingcheng Formation and provide crucial age constraints for the Songliao Lower Cretaceous Strata. The new CA-ID-TIMS geochronology constrained the Yingcheng Formation at 102.571 + 0.320/?2.346 Ma to ca. 113 Ma, correlating to the Albian Stage. Combined with the previous published Songliao geochronology, the Quantou Formation is constrained to between 96.442 + 0.475/?0.086 Ma and 91.923 + 0.475/?0.086 Ma; the Denglouku Formation is constrained to between 102.571 + 0.320/?2.346 Ma and 96.442 + 0.475/?0.086 Ma; the age of the Shahezi Formation is estimated at ca. 113 Ma to ca. 118 Ma, which could extend to ca. 125 Ma in some locations in Songliao Basin. The major unconformity between the Yingcheng Formation and the Denglouku Formation, which represents the transition of the basin from syn-rift to post-rift is thus confined to between 102.571 + 0.320/?2.346 Ma and 96.442 + 0.475/?0.086 Ma. This is roughly contemporaneous with the change in the direction of the paleo-Pacific plate motion from west-southwest to north or northwest in mid-Cretaceous, suggesting their possible connections.  相似文献   

19.
The Toro Negro Formation is a foreland sequence in western La Rioja province, Argentina, which records the late-stage tectonic evolution of the Vinchina Basin. Together with the underlying Vinchina Formation, these two units represent one of the thickest and longest continually exposed foreland sections in northwest Argentina. The Vinchina basin is uniquely situated between the Toro Negro and Umango blocks of the Western Sierra Pampeanas to the north and south, the Precordillera to the west, and the Sierra de Famatina to the east. New U-Pb dating of volcanic tephra provides improved age constraints on the pace of sedimentation, and U-Pb ages of detrital zircons serve to strengthen existing provenance interpretations. We show that deposition of the Toro Negro Formation spans roughly 6.9 to 2.3 Ma: Late Miocene to Early Pleistocene. A high-relief, erosional unconformity with the underlying Vinchina Formation developed sometime between 9.3 and 6.9 Ma, although stratigraphic considerations suggest it spanned only the later part of this time interval (perhaps 7.5–6.9 Ma). Above this unconformity, undecompacted sedimentation rates are remarkably high at ∼1.2 mm/yr, slowing to ∼0.3 mm/yr after ∼6 Ma. An unconformity in the upper part of the section is constrained to occur sometime between 5.0 and 3.0 Ma, probably beginning not long after 5.0 Ma. The timing of both unconformities broadly Matches the timing of inferred tectonic events in the Sierra Famatina ∼50 km to the east, the Fiambalá basin to the north, and the Bermejo basin to the south, suggesting they May record regional tectonism at these times. Provenance interpretations of detrital zircon spectra are consistent with previous interpretations based on sediment petrography. They show that provenance did not change significantly during the course of Toro Negro deposition, precluding major tectonically-induced drainage reorganization events. Sediments were derived primarily from the north (Toro Negro Block) and west (Precordillera). The data are consistent with a subtle increase in sediment supply from the Precordillera beginning around 6.5 Ma.  相似文献   

20.
Diagenetically altered volcanic ash deposits (bentonites) found in Cretaceous terrestrial and marine foreland basin sediments have the potential to be used for chronostratigraphy and subsurface correlation across Alaska's North Slope. Detailed age and geochemical studies of these volcanogenic deposits may also shed light on the tectonic evolution of the Arctic. Though these bentonites have been previously studied, there are few published results for regional bentonite ages and geochemistry due to challenges of dating weathered volcanic ash. We analyzed mineral separates from cored bentonites recovered from wells in the National Petroleum Reserve Alaska. The analyses confirm that an intense period of volcanic ash deposition on Alaska's North Slope began by the late Albian and persisted throughout the Cenomanian, an interval of rapid progradation and aggradation in the Colville basin. These results also add to a sparse record of radioisotopic ages from the Nanushuk Formation. A bentonite preserved in delta plain sediments in the upper Nanushuk Formation dates to 102.6 ± 1.5 Ma (late Albian), while a bentonite near the base of the overlying Seabee Formation was deposited at 98.2 ± 0.8 Ma, in the early Cenomanian. The two ages bracket a major flooding surface at the base of the Seabee Formation near Umiat, Alaska, placing it near the Albian-Cenomanian boundary (100.5 Ma). Several hundred feet up-section, the non-marine Tuluvak Formation contains bentonites with 40Ar/39Ar ages of 96.7 ± 0.7 to 94.2 ± 0.9 Ma (Cenomanian), several million years older than previously published K–Ar ages and biostratigraphic constraints suggest.Major and trace element geochemistry of a sub-sample of six bentonites from petroleum exploration wells at Umiat show a range in composition from andesite to rhyolite, with a continental arc source. The bentonites become more felsic from the late Albian (∼102 Ma) to late Cenomanian (∼94 Ma). A likely source for the bentonites is the Okhotsk-Chukotka Volcanic Belt (OCVB) of eastern Siberia, a continental arc which became active in the Albian and experienced episodes of effusivity throughout the Late Cretaceous. Chronostratigraphically anomalous 40Ar/39Ar ages coincide with peaks of magmatic activity in the OCVB, suggesting that these anomalously old ages may be due to magmatic contribution of xenocrysts or recycling of detrital minerals from older volcanic events. An alternative explanation for the chronostratigraphically anomalous ages is mixing of bentonites with detrital sediment derived from unroofing and erosion of metamorphic rocks in the Brooks Range, Herald Arch, and Chukotka throughout the mid to Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号