首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid. Two kinds of moments(i.e., point values(PV moment) at cell interfaces and volume integrated average(VIA moment) value) are defined within a single cell. The PV moment is updated by a conventional semi-Lagrangian method, while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation. Different from the spatial approximation used in the CSL2(conservative semi-Lagrangian scheme with second order polynomial function) scheme, a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment. To achieve exactly positive-definite preserving, two kinds of corrections are made on the original conservative semi-Lagrangian with rational function(CSLR)scheme. The resulting scheme is inherently conservative, non-negative, and allows a Courant number larger than one.Moreover, the spatial reconstruction can be performed within a single cell, which is very efficient and economical for practical implementation. In addition, a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry, which benefitsthe implementation of the 1 D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry. Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity, and it has the potential to transport the tracers accurately in a real atmospheric model.  相似文献   

2.
The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.  相似文献   

3.
王军  陈嘉滨 《大气科学》2000,24(4):493-508
在作者过去提出的完全非内插半拉格朗日格式的基础上,针对半拉格朗日格式由于内插带来预报场人为的光滑性问题,进一步发展了这种计算格式,证明了此格式的计算稳定性。为检验这种新的计算格式的性能,在一维和二维问题上进行了应用。在一维问题中采用了一维无粘Burgers方程(方程中有突变点);二维问题采用了浅水波方程,同时将这些计算结果与Ritchie方案及欧拉方案或一般半拉格朗日内插方案的计算结果进行了比较,发现新格式消除了内插和预报场的人为光滑,并且计算精度有一定程度的提高,这为以后将此格式推广到全球谱模式打下了基础。  相似文献   

4.
Summary ?The shallow water equations are formulated on the sphere in a three-dimensional coordinate system with the aid of tangential velocity components and differential operators. We introduce a modified semi-Lagrangian scheme for the discretization in time. The discretization in space is solved by linear finite elements. The grids we use are regular refinements of a macro triangulation which itself is derived from a highly symmetric polyeder also known as a bucky or soccer ball. The good numerical results show that this combination is a promising approach. The numerical algorithm is stable and its strength is the conservation of mass and energy. Received April 13, 2001; Revised December 18, 2001  相似文献   

5.
平流计算的精度对数值模式的结果有着重要影响.如何在半拉格朗日模式中发展高阶精度的标量平流计算方案是提高半拉格朗日数值模式精度的重要问题.文中采用计算流体力学中一个新的高精度正定保形的物质平流方案,通过映射单元格方法将其与半拉格朗日模式结合起来,既保留了半拉格朗日时间积分方案中积分时间步长大、计算效率高的特点,又发挥新方...  相似文献   

6.
MultispectrumMethodandtheComputationofVaporEquation①JiZhongzhen(季仲贞)andWangBin(王斌)LASG,InstituteofAtmosphericPhysics,ChineseA...  相似文献   

7.
Summary Extended integrations of semi-Lagrangian and Eulerian shallow water primitive equation models are performed. The semi-Lagrangian model used the semi-implicit two-time-level scheme. The Eulerian model used a conserving nonlinear advection scheme.For low resolution and longer integrations, difficulties were encountered with the semi-Lagrangian model which were absent in the Eulerian model. These difficulties are discussed.With 14 Figures  相似文献   

8.
1.IntroductionWeatherforecastingmodelisasetofpartialdifferentialequations(PDE).Itshouldsatisfycertaininitial--boundaryconditions.Clearly,oneofthemostimportantimprovementsinweatherforecastingmodelistooptimizeitsinitialandboundaryconditions.Forthesimplicityofdiscussion,wemightregardthespatialboundaryconditionasakindofinitialconditioninspatialdimension.Aneffectivedataassimilationprocedureisrequiredinordertoutilizewidelycollectivedatafortheweatherforecastingmodelandfindanoptimalinitialcondition.…  相似文献   

9.
ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpola tion (referred to as the SL_CL scheme). The SL_CL scheme has been used in many operational NWP models, but there are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on Reich's semi-Lagrangian advection scheme (referred to as the R2007 scheme), the Re_R2007 scheme that uses the low- and high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the Re..R2007 scheme and the SL_CL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the Re_R2007 scheme; and (2) the normalized errors of the Re_R2007 scheme were about 7.5 and 3 times smaller than those of the SL_CL scheme in one- and two-dimensional tests, respectively, indicating the higher accuracy of the Re..R2007 scheme. Furthermore, two solid-body rotation tests were conducted in the latitude-longitude spherical coordinate system with non uniform grid cells, which also verified the Re_R2007 scheme's advantages. Finally, in comparison with other global advection schemes, the Re_R2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for the application of the Re_R2007 scheme to the GRAPES model is provided.  相似文献   

10.
Summary The classical forward-in-time upstream advection scheme for uniform flow field has been extended to include non-uniform and time-dependent advective flow. This generalised scheme is described in one dimension for an advective flow which varies both in time and in space. The classical upstream advection scheme is only first-order accurate both in time and in space if the advective flow is not uniform. Higherorder accuracy in both time and space, however, can be easily obtained in the generalised scheme.This generalised scheme with third-order accuracy is applied to the one-dimensional inviscid Burgers equation (socalled self-advection problem), two-dimensional steady flow, and to a time-split shallow water equation model. The results are compared with those obtained from the Takacs' (1985) scheme and from a standard third-order semi-Lagrangian scheme, and also with those obtained from the fourth-order Lax-Wendroff scheme of Crowley (1968) in the time-split shallow water equation model. It is shown that the generalised scheme performs as well as, but is more efficient than, the standard semi-Lagrangian scheme with same order. It is much more accurate than the Takacs' scheme which has large dissipation errors, especially for the flow with strong deformation. In contrast, the generalised scheme has very weak dissipation and has much better dispersion and shapeconserving properties. Although the fourth-order Lax-Wendroff scheme has higher accuracy and can give more accurate numerical solutions for uniform advective flow or solid rotational flow (Crowley, 1968), it is inferior to the generalised third-order scheme for non-uniform flow with strong deformation or large spatial gradients. This generalised scheme, therefore, has considerable application potential in different numerical models, especially for the models using time-split algorithms.With 8 Figures  相似文献   

11.
相变修正方案在GRAPES模式标量平流中的应用   总被引:2,自引:1,他引:1  
苏勇  沈学顺 《气象学报》2009,67(6):1089-1100
如何更好地模拟水物质的空间分布和小尺度变化,对于数值天气预报效果的改进,特别是对于更好地模拟降水过程,具有重要的意义.计算机的飞速发展使数值模式的分辨率不断提高,云的显式计算成为可能,这样就要求水物质在平流的过程中必须要做到高精度、守恒、保形.水物质场是正定标量的场,具有空间和时间变化幅度大、存在强梯度甚至不连续的特点,水物质场的合理模拟一直是数值预报中的一个难题.GRAPES模式中的标量平流方案采用PRM分段有理函数方法,比较好地解决了该半拉格朗日模式中水物质平流的高精度、守恒、保形问题,但是当有凝结潜热发生时,由于半拉格朗日平流方案求解上游点时的插值,在云边缘区域会造成虚假的云水,进而导致不合理的相变过程.为了解决以上问题,本研究在GRAPES模式中PRM平流方案的案础上,加入了非线性半拉格朗日相变潜热的修正方案,旨在改进GRAPES模式对水物质平流问题的模拟,提高降水的预报效果.该研究通过理想试验,验证了非线性半拉格朗口相变修正方案可以有效地限制云边缘由于半拉格朗日平流方案插值产生的虚假柑变;然后将该方案加入GRAPES模式的PRM水物质平流方案中,通过实际个例模拟验证了加入非线性半拉格朗日方案以后,模式可以更好地模拟水物质的平流过程,且对云中热力场及水物质分布地模拟更加合理,同时预报出的雨带中心区与实况更加符合.  相似文献   

12.
A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation, and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie’s scheme (1986). The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.  相似文献   

13.
Designed for grid point systems, the traditional semi-Lagrangian semi-implicit scheme is not mass-conserving and can lead to significant solution errors. In the present study, a finite-volume semi-Lagrangian semi-implicit scheme (hereafter “FVSLSI”) is designed for the Yin-Yang mesh and tested in a barotropic shallow water model in the spherical coordinate system. Three test cases, i.e. the advection of a solid body, a steady state nonlinear zonal geostrophic flow and the deformation flow, are simulated to compare the performance of the FVSLSI with that of the traditional semi-Lagrangian scheme (hereafter “SL”) from perspectives of shape preservation, mass conservation, normalized bias, and convergence rate. Results indicate that the FVSLSI performs better than the SL in mass conservation and shape preservation. The bias by the FVSLSI is smaller than that by the SL, while the rate of convergence by the FVSLSI is larger than that by the SL. The FVSLSI also allows large time step. Therefore, the FVSLSI is suggested to be distributed to communities that are developing atmospheric/oceanic models.  相似文献   

14.
This article describes a new general circulation model (GCM) developed jointly by The University of New South Wales (UNSW) and the University of Hamburg. The model is versatile in that it can be run as a medium-range (1 to 15 days) global numerical weather prediction (NWP) model; as an extended range (15 to 30 days) NWP model; and as a GCM for periods extending from seasons, through annual and decadal periods, and beyond. The model can be coupled with ocean models that vary in complexity from simple "swamp" oceans to complex ocean GCMs. The atmospheric GCM also has a number of novel features, particularly in the numerical integration scheme which is a high-order, mass-conserving, semi-implicit semi-Lagrangian scheme, thereby removing the stability restriction on the time-step and allowing efficient long-term integrations. The emphasis here will be on demonstrating that the new model performs effectively on the usual measures of skill (statistics such as mean errors, root-mean-square errors and anomaly correlations) in several standard applications upon which new models usually are assessed. These applications include medium range weather forecasts out to 10 days on a daily basis over a one year period; a limited 10-year simulation climatology, prediction of atmospheric anomalies using SST anomalies in an El Nino year; and an alternative two-way approach to regional modelling (the "down-scaling problem") made possible because the unconditional stability of the semi-implicit, semi-Lagrangian formulation permits large variations in grid spacing without changing the time step size. Finally, the model is run on a variety of parallel computing platforms and it is shown that near-linear speed-up can be attained. This is significant for both medium range NWP and very long-term GCM integrations. Received: 28 February 1996 / Accepted: 30 July 1996  相似文献   

15.
Results of numerical experiments on the simulation of a flow moving around an isolated mountain are presented. The influence of the sizes of a barrier and of the flow velocity on characteristics of wave oscillations is discussed. All calculations are carried out with the authors’ two-dimensional (in the vertical plane) version of a nonhydrostatic dynamic scheme, in which equations of the dry quasi-incompressible atmosphere are solved with a semi-implicit semi-Lagrangian method. This method uses large time steps as compared to explicit-implicit Eurlerian methods. The results of calculations agree with results obtained by other authors, which gives hope for finding physically correct solutions in the simulation of nonhydrostatic processes in the atmosphere.  相似文献   

16.
基于大涡模拟评估GRAPES模式对对流边界层的模拟性能   总被引:3,自引:1,他引:2  
江川  沈学顺 《气象学报》2013,71(5):879-890
为检验GRAPES半拉格朗日动力框架在大涡尺度上的模拟性能,为未来发展千米及其以下高分辨尺度的数值模式奠定基础,并构造GRAPES大涡模式以检验和发展边界层湍流参数化提供科学工具。通过在GRAPES模式中加入Smagorinsky-Lilly小尺度湍涡参数化,并将模式分辨率提高至50 m,构建GRAPES大涡模式(GRAPES_LES),以便分析GRAPES模式在大涡尺度上的适用性。同时利用广泛应用的已有大涡模式UCLA_LES作为参考,通过对干对流边界层湍流的模拟分析及与UCLA_LES模拟结果的对比,得出如下主要结论:GRAPES半拉格朗日动力框架能够模拟出与已有的大涡模式相似的边界层湍流特征;同时,通过分析也证明GRAPES存在由于采用半拉格朗日平流计算而带来过度耗散的问题:当使用相同的滤波尺度(Smagorinsky 常数)时,GRAPES_LES模拟出的速度场更为平滑,小尺度湍流结构过于光滑,通过对湍流能量的能谱分析更清楚地表明了这一点。进一步,对不同的Smagorinsky常数(对应不同的滤波尺度)进行了敏感性试验,表明可以通过改变滤波尺度,有效地缓解半拉格朗日框架隐含的耗散问题,得到更接近UCLA_LES所模拟的湍流特征。  相似文献   

17.
A flux-form semi-Lagrangian transport scheme(FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG.Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion,in comparison with other conventional schemes.Importantly,FFSL can automatically maintain the positive definition of the transported tracers,which was an underlying problem in the previous spectral composite method(SCM).To comprehensively investigate the impact of FFSL on GCM results,we conducted sensitive experiments.Three main improvements resulted:first,rainfall simulation in both distribution and intensity was notably improved,which led to an improvement in precipitation frequency.Second,the dry bias in the lower troposphere was significantly reduced compared with SCM simulations.Third,according to the Taylor diagram,the FFSL scheme yields simulations that are superior to those using the SCM:a higher correlation between model output and observation data was achieved with the FFSL scheme,especially for humidity in lower troposphere.However,the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme.This bias led to an over-simulation of precipitable water in comparison with reanalysis data.Possible explanations,as well as solutions,are discussed herein.  相似文献   

18.
The impact of numerical modeling of moisture transport on the simulation of the seasonal mean pattern of precipitation in the tropics is studied. The NCAR CCM2 with spectral and semi-Lagrangian moisture transport has been used for this purpose. The differences in the numerical modeling of moisture transport are found to have a significant impact on the simulation of the seasonal mean patterns. The major differences while using the spectral method (vis-a-vis the semi-Lagrangian method) are (1) a decrease in rainfall over the Indian monsoon region, (2) a decrease in rainfall over the west Pacific region and (3) an increase in rainfall over the central and east Pacific regions. There are substantial differences in the amount of precipitable water vapor simulated by the two moisture transport techniques. It is shown that the difference in precipitable water vapor between the two simulations is associated with changes in the vertical moist static stability (VMS) of the atmosphere, and differences in the simulated precipitation patterns. Received: 7 August 1998 / Accepted: 15 October 1999  相似文献   

19.
平流计算方案对一次江淮梅雨暴雨模拟的影响   总被引:6,自引:6,他引:0  
为对比MM5模式中原中央差平流方案和新型半拉格朗日插值计算方案CIP的模拟差别,针对2006年7月5~6日的江淮流域梅雨暴雨过程进行了模拟,证实了CIP方案对这次暴雨过程具有较好的模拟效果,它更加真实地再现了梅雨锋降水的中尺度结构,改进了模式的模拟结果,特别是对梅雨锋内对流运动结构的模拟,显示了CIP对刻画大梯度分布和强对流运动计算的良好性能。平流的高精度计算对提高这类系统的模拟精度非常重要。  相似文献   

20.
ATTILA: atmospheric tracer transport in a Lagrangian model   总被引:2,自引:0,他引:2  
The model ATTILA has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and advects the centroids of 80.000 to 190.000 constant mass air parcels. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing and inter-parcel transport, and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. The transport characteristics of ATTILA are evaluated against observations and the standard semi-Lagrangian transport scheme of ECHAM by two experiments. (1) We simulate the distribution of the short-lived tracer radon (222Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. (2) We simulate the distribution of radiocarbon (14C) from nuclear weapon tests in order to examine upper tropospheric and stratospheric transport characteristics. Contrary to the semi-Lagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in mid-latitudes. Since ATTILA is a numerically non-diffusive scheme, it is able to maintain steep gradients, which compare better to the observations than the rather smooth gradients produced by the semi-Lagrangian scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号