首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calculations of electron temperature (T e) and density (N e) sensitive line ratios in Sixi involving transitions in the 358–604 wavelength range are presented. These are shown in the form of ratio-ratio diagrams, which should in principle allow bothN e andT e to be deduced for the Sixi line-emitting region of a plasma. However a comparison of these with observational data for two solar flares, obtained with the Naval Research Laboratory's S082A spectrograph on boardSkylab, reveals that the experimental ratios are much larger than expected from theory, which is probably due to the Sixi lines in the S082A spectra being blended with transitions from species including Nev, Fexi, and Fexii. Possible future applications of the Sixi results to spectral data from the Coronal Diagnostic Spectrometer on the Solar and Heliospheric Observatory are briefly discussed.  相似文献   

2.
Schultz  R. B.  White  O. R. 《Solar physics》1974,35(2):309-316
We obtained simultaneous spectra with a spatial resolution of 1/2 and a temporal resolution of 15 s in H, Ca ii-K, Caii 8542 Å, and three Fei lines of the sunspot group responsible for the large flares of August, 1972 (McMath No. 11976). A time series taken 1972, August 3 in the Fei 6173 Å Zeeman sensitive line was analyzed for oscillations of field strength and the angle between the field and the line of sight, and for changes of the field associated with the Ca ii-K umbral flashes discovered by Beckers and Tallant (1969). The power spectra show no significant peaks, conflicting with the results of Mogilevskii et al. (1972) who reported oscillations in the longitudinal component of the field strength with periods of 56, 90, and 150 s. Changes in the field were not observed to be correlated with the occurrence of umbral flashes. These results place restrictions on magnetic modes of energy transport between the photospheric layers and the chromospheric layers where the umbral flashes are observed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
X-ray spectra of the sun have been obtained during solar flares. New emission lines are observed in the spectral range from 1.3 Å to 3 Å, and 8 Å–20 Å, the most intense of the new emission features being tentatively attributed to optical transitions in high stages of ionization of iron (Fexxv through Fexx). Studies of the variability of these lines during flares provide new information of the development of a hot plasma in the initial stages of the flare event.  相似文献   

4.
Aschwanden  Markus J. 《Solar physics》1999,190(1-2):233-247
Recent observations with EUV imaging instruments such as SOHO/EIT and TRACE have shown evidence for flare-like processes at the bottom end of the energy scale, in the range of E th≈1024–1027 erg. Here we compare these EUV nanoflares with soft X-ray microflares and hard X-ray flares across the entire energy range. From the observations we establish empirical scaling laws for the flare loop length, L(T)∼T, the electron density, n e(T)∼T 2, from which we derive scaling laws for the loop pressure, p(T)∼T 3, and the thermal energy, E thT 6. Extrapolating these scaling laws into the picoflare regime we find that the pressure conditions in the chromosphere constrain a height level for flare loop footpoints, which scales with h eq(T)∼T −0.5. Based on this chromospheric pressure limit we predict a lower cutoff of flare loop sizes at L ∖min≲5 Mm and flare energies E ∖min≲1024 erg. We show evidence for such a rollover in the flare energy size distribution from recent TRACE EUV data. Based on this energy cutoff imposed by the chromospheric boundary condition we find that the energy content of the heated plasma observed in EUV, SXR, and HXR flares is insufficient (by 2–3 orders of magnitude) to account for coronal heating.  相似文献   

5.
We have qualitatively analyzed, in the H and K lines spectral region, 31 flares covering part of umbrae or penumbrae of sunspots. A strong narrowing of the emission lines has been observed over the umbrae, and the lines are, in general, much weaker than in common flares suggesting that the optical thickness is quite low in these parts. We have calculated the Stark broadening of the H line from the general theory, and it has been applied to obtain the electron density in 9 flare spectra. In all cases it has been found that n e > 1013 cm–3. Goldberg's method has been applied to find the kinetic temperature from the H and K lines of Ca ii, and from the ratio between the central intensities of the lines we have calculated the optical thickness in the K line. Much evidence supports the assumption that the flare emission is highly diluted in the cases considered, and we propose a two-component model for the calcium emission lines.
  相似文献   

6.
We analyze X-ray images and spectra of a coronal structure which extended to altitudes over 130 000 km above an eruptive flare located 20° behind the western solar limb. The images were obtained by the Flat Crystal Spectrometer (FCS) and the spectra were obtained by the Bent Crystal Spectrometer (BCS) aboard the SMM spacecraft. Images in Oviii and Mgxi lines cover the period from before the flare onset (which occurred at 22:31 UT on 16 February, 1986) through 17 UT on 17 February and were used for determination of temperature and emission measure within the structure. BCS obtained Caxix spectra of the coronal event, benefiting from the occultation of the active region behind the solar limb.The BCS data show, and FCS data confirm, that the temperature, after an initial rise and decline, stayed almost constant for many hours after 04:30 UT on 17 February. This may indicate that initially we observed the rise and decay of post-flare loops, but later the X-ray emission came predominantly from a post-flare giant arch that formed above them. This has been observed in many previous cases. However, a comparison with other events characterized by very high post-flare loops, such as those that occurred on 29 July, 1973 (Skylab data) and on 14 February, 1986 (from this same region), suggests that we may be observing the same system of slowly growing groups all the time. Therefore, we suggest a third possibility, i.e., that such anomalously high loop systems first behave like post-flare loops but gradually take over some characteristics of a post-flare giant arch. The Soft X-ray Telescope aboardYohkoh, with spatial resolution improved by nearly an order of magnitude, might be able to check up on the development of such large-scale coronal structures if proper observational modes are applied after the occurrence of major eruptive flares.Deceased 1 June, 1993.  相似文献   

7.
The profiles of the resonance lines of Caii have been studied in two large disk flares and in the surrounding plage. In the brightest portions of the flares no self-reversal in the central emission core was detected; self-reversed cores were present in the less bright portions of the flares. We find that as the intensity of the emission core increases the separation of the H2 and K2 peaks decreases monotonically, becoming unobservable at intensities near to 0.90 the local continuum. Possible reasons for the behavior of the H and K lines in flares are considered. It is suggested that the largest density enhancements in flares are found near the strongest magnetic field.  相似文献   

8.
We have observed the solar Caii H and K lines to obtain well-calibrated ratios of their core residual intensities. From three independent calibrations, one using a standard lamp, we conclude that the residual intensity ratio r(K3)/r(H3) is 1.048 ± 0.03 in the quiet chromosphere and 1.20 ± 0.03 in a plage region. These ratios correspond closely to those observed in stars with quiet and active chromospheres, respectively. For a chromospheric model suggested by the calcium lines and a four-level Caii ion, we compute H and K line profiles varying the direct collisional coupling and indirect radiative and collisional coupling via the 3 2 D level. We conclude that enhanced chromospheric activity in the sun and late-type stars results more from a steepening of the chromospheric thermal gradient than from a change in density.Kitt Peak National Observatory Contribution No. 530.Of the University of Colorado and the National Bureau of Standards.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

9.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE c , where 15 keV <E c < 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources.  相似文献   

10.
Electron impact excitation rates for Fexxi, calculated with theR-matrix code, are used to determine theoretical electron density sensitive emission line ratios involving transitions in the 121–146 wavelength range. The observed ratios for a solar flare, obtained with a grazing spectrometer on board the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.3 dex. In addition, the derived values ofN e are similar to those estimated for the high temperature regions of other solar flares. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations.  相似文献   

11.
Continued spectroscopic observations of Nova Del 67 during 1971 and 1972 show a general decrease of the nebular and coronal emission with respect to the local continuum. The continuous spectrum exhibits a strong Balmer emission (figure 1). Equivalent widths of Hi, Hei, Heii, Oi, [Oi], Oii, [Oii], Oiii, [Oiii], Niii, [Sii], [Aiii], [Neiii], [Nev], [Fevi], [Fevii], [Fex], [Fexi], [Fexiv], [Nixvi], [Nixv] are listed in tables 1 and 2.Figures 5 to 10 show several line profiles, which can be interpreted in terms of a model proposed by Hutchings (1972). Kinematical properties of the nova envelope do not seem to have changed in the 1968–1972 time interval. However, a study of the [Oiii] (4959 Å) line indicates that the physical conditions in the polar blobs in 1972 (T e=10 660 K,N e=5,5×105 cm–3) are different from those prevailing in equatorial rings (T e=9×100 K,N e=7×105 cm–3).

Le matérial d'observation utilisé pour cette étude a été obtenu à l'aide de téléscopes de 120 cm, 152 cm et 193 cm de l'Observatoire de Haute-Provence (CNRS).  相似文献   

12.
Second-step acceleration of nonrelativistic protons and ions in impulsive solar flares is discussed extending our earlier calculations for relativistic electrons. We derive the relevant particle transport equation, discussing in detail the influence of the particle's effective charge and mass number on the various momentum gain (stochastic acceleration, diffusive shock wave acceleration) and loss (Coulomb interactions, particle escape) processes. Analytical solutions for the ion-momentum spectra in the hard-sphere approximation are given. The inclusion of Coulomb losses modify the particle spectra significantly at kinetic energies smaller than E B = 0.64( e /5.0) MeV nucl.–1 from the well-known Bessel function variation in long-duration flares. For equal injection conditions this modification explains the observed much smaller ion fluxes from impulsive flares at high energies as compared to long-duration flares. We also calculate the 3He/4He-isotope variation as a function of momentum in impulsive flares in the hard-sphere approximation and find significant variations near E m = 0.38(T e /2 × 106 K) MeV nucl.–1, where T e is the electron temperature of the coronal medium.  相似文献   

13.
We have obtained IUE ultraviolet spectra of the low-excitation planetary nebula CN 3-1. The recordings show the well-known doublet 2800 MgII and resonance line 2852 MgI as strong absorption lines. We show that these lines cannot be of interstellar origin and that they may be formed in two envelopes surrounding the main nebula: in the transition zone (doublet 2800 MgII) and in the neutral envelope (line 2852 MgI). These envelopes possess an important property: they contain dust particles, and even a moderate amount of such particles may influence the strength of the absorption lines of MgII and MgI.The emission line 4686 HeII has no relation to the nebula CN 3-1 and belongs to its nucleus, a star of type WR. It is very probable that the nucleus of this nebula is a binary system with a WR component (T *=50 000 K), exciting the helium lines, and a star of B0 or B2 type (T *=26 000 K) exciting the nebular linesN 1+N 2 [OIII], 3727 [OII], hydrogen lines, etc.  相似文献   

14.
We studied the EUV line spectra of three flare observed with the NRL slit spectrograph on Skylab. The electron densities in the flare transition-zone plasmas are determined from density-sensitive lines of Si iii and O iv. The electron densities in all three flares studied were greatest during the flare maximum with values of the order of 1012 cm–3. The density decreases by a factor of 2 to 3 in the decay phase of the flares. The intensities of EUV lines from the flare chromospheric and transition-zone plasmas all are greatly enhanced. In contrast to lines for Oi, Ci, Feii and other chromospheric ions, the lines of Oiv and Nv and other transition-zone lines are not only enhanced but also very much broadened.Fitting of the N v 1242 Å line with a two-gaussian model shows that for two of the flares studied, there is a red-shifted component in addition to an unshifted component. The shifted component in the N v line profiles is interpreted as due to a dynamic and moving plasma with a bulk motion velocity of 12 km s–1 for one flare and more than 70 km s–1 for the other. The broadened line profiles indicate that there are large turbulent mass motions with random velocities ranging from 30 to 80 km s–1.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

15.
X-ray spectra of solar flares in the spectral range from 8.5 Å to 16 Å have been obtained from a Naval Research Laboratory crystal spectrometer flown on the sixth Orbiting Solar Observatory (OSO-6). A list of emission features is presented and tentative identifications of some of the features are suggested. The time-behavior of the emission lines during flares is discussed, and the possibility of determining electron densities in flare plasmas using density sensitive lines of highly ionized iron is considered. Approximate calculations are performed for a density sensitive line of Fexxii.  相似文献   

16.
A model of intergalactic medium heated by QSOs and cooled by the expansion of the universe and Compton cooling is studied in the framework of a Friedmann-Robertson-Walker universe. Cosmological evolution functions of the comoving density of QSO's as well as the case of no evolution are considered. The theoretical X-ray background spectrum (through thermal bremsstrahlung) and Comptony parameter are calculated including relativistic corrections in the electron-electron, electron-proton and electron-photon interactions. The observed X-ray background and the upper limit of the Compton parametery cobe given by the COBE satellite are used to adjust, for each value of reheating redshiftsz c ranging from 0.1 to 5.0, the present values of the temperatureT 0 and densityn 0 of the intergalactic gas. Forz c > 0.25, when the theoretical X-ray spectrum fits the observed one, the adjusted values ofT 0 andn 0 imply iny >y cobe. On the other hand, whenT 0 andn 0 are consistent withy cobe, the calculated X-ray spectrum is lower than the observed one. Unless 100% of the observed X-ray background is due to discrete sources and if the intergalactic medium contributes more than 2.5% to such background we come to the interesting result that the medium must have been heated atz c < 1. In this case we shall have to explain the high energy rates necessary to heat the intergalactic medium. Forz c 0.25, it is possible to find values ofT 0 andn 0 such that both the calculated X-ray background and the y parameter simultaneously reproduce the corresponding observed values. However, in this case, unless it could be shown to be otherwise by future observations or theoretical studies, it seems that the model of hot intergalactic medium is not plausible because of the high energies required to heat the intergalactic gas.  相似文献   

17.
Radio measurements of the electron temperature ofHii regions are obtained from the ratio of the brightness temperature of a hydrogen recombination line to that of the adjacent continuum, while optical measurements are obtained from the ratio of [Oiii] forbidden-line intensities. The radio and optical measurements made under the assumption of an isothermalHii region,T R andT opt respectively, are combined to derive a temperature distribution for an entire nebula. A sphericalHii region in local thermodynamic equilibrium with constant density which is optically thin in both the line and the continuum is used as a model. Assuming linear temperature gradients withT R=6000K andT opt=10000K, it is found thatT=12000K (1–0.74r/R), wherer is the distance from the center andR is the radius of the nebula.  相似文献   

18.
Two-dimensional evolutions of two flares of October 18, 1990 have been well observed in the Caii K line with a CCD camera at Norikura station of National Astronomical Observatory in Japan. There are two common characteristics for the flares: 3 - 5 min before the impulsive phase, the heating already begins at the footpoints of the flares, but no asymmetry in line emission has been detected. After the onset of the impulsive phase, Caii K line emission at the footpoints shows strong red asymmetry, with the maximum asymmetry occurring at the same time as the peak of the radio bursts. The maximum downward velocity is about 30 50 km s–1. For flare 1, blue and red asymmetries were observed in two sides of the footpoint area. They developed and attained a maximum nearly at the same time and the inferred Doppler velocities are comparable (30 40 km s–1). This implies that two mass jets started from a small region and ejected along a loop but in opposite directions with roughly equivalent momentum. A possible mechanism has been discussed.  相似文献   

19.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

20.
In this paper we study the far-UV as well as the UV spectrum of the spectroscopic binary system SZ Psc in the wavelength ranges 1235–1950 Å and 2710–3090 Å, respectively, from spectra obtained with the International Ultraviolet Explorer (IUE). The UV spectrum of SZ Psc is mainly an emission spectrum. The short wavelength region includes emission lines formed from the low chromosphere to the transition region (e.g., Siiv,Civ, andNv) and also a deep and broad absorption line of Feii.The Mgii[1] resonance doublet at about 2800 Å presents a P Cygni profile and a multiple structure with two emission and two absorption satellite components. We also present the emission measure diagram in the temperature region 4.4T e <53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号