首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   

2.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

3.
A correct understanding of the dynamical effect of solar radiation exerted on fluffy dust particles can be achieved with assistance of a light scattering theory as well as the equation of motion. We reformulate the equation of motion so that the radiation pressure and the Poynting-Robertson effect on fluffy grains are given in both radial and nonradial directions from the center of the Sun. This allows numerical estimates of these radiation forces on fluffy dust aggregates in the framework of the discrete dipole approximation, in which the first term of the scattering coefficients in Mie theory determines the polarizability of homogeneous spheres forming the aggregates.The nonsphericity in shape turns out to play a key role in the dynamical evolution of dust particles, while its consequence depends on the rotation rate and axis of the grains. Unless a fluffy dust particle rapidly revolves on its randomly oriented axis, the nonradial radiation forces may prevent, apart from the orbital eccentricity and semimajor axis, the orbital inclination of the particle from being preserved in orbit around the Sun. However, a change in the inclination is most probably controlled by the Lorentz force as a consequence of the interaction between electric charges on the grains and the solar magnetic field. Although rapidly and randomly rotating grains spiral into the Sun under the Poynting-Robertson effect in spite of their shapes and structures, fluffy grains drift inward on time scales longer at submicrometer sizes and shorter at much larger sizes than spherical grains of the same sizes. Numerical calculations reveal that the dynamical lifetimes of fluffy particles are determined by the material composition of the grains rather than by their morphological structures and sizes. The Poynting-Robertson effect alone is nevertheless insufficient for giving a satisfactory estimate of lifetimes for fluffy dust grains since their large ratios of cross section to mass would reduce the lifetimes by enhancing the collisional probabilities. We also show that the radiation pressure on a dust particle varies with the orbital velocity of the particle but that this effect is negligibly small for dust grains in the Solar System.  相似文献   

4.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

5.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   

6.
Model calculations were carried out to determine the extent of the effects on the rotational bursting of F-coronal dust in eccentric orbits due to their interaction with the flow of coronal mass ejections (CMEs). The model included an initial limiting perihelion distance of 8 solar radii (RS) for all particles used. The parameters of the CMEs (velocity and proton number density) along with the various parameters of the dust particles (size and median density) were taken into consideration. By keeping these parameters the same and varying one of them, it was found that the velocity of the CMEs protons plays a major role in determining at which heliocentric distance the particle bursts. To a lesser degree, the median density of the particle also had a similar effect. Depending on the values of the dust particles orbital eccentricity, limiting sizes of the dust particles were found beyond which the particles do not burst. More particles bursted in regions close to their perihelion passage, however very few particles bursted near 8RS from which we conclude that the majority of the fragmented particles were outside the F-corona region. The results show that rotational bursting of the dust in eccentric orbits inside the F-corona forces the particles to fragment outside 8RS.  相似文献   

7.
This paper focuses on tenuous dust clouds of Jupiter's Galilean moons Europa, Ganymede and Callisto. In a companion paper (Srem?evi? et al., Planet. Space Sci. 51 (2003) 455-471) an analytical model of impact-generated ejecta dust clouds surrounding planetary satellites has been developed. The main aim of the model is to predict the asymmetries in the dust clouds which may arise from the orbital motion of the parent body through a field of impactors. The Galileo dust detector data from flybys at Europa, Ganymede and Callisto are compatible with the model, assuming projectiles to be interplanetary micrometeoroids. The analysis of the data suggests that two interplanetary impactor populations are most likely the source of the measured dust clouds: impactors with isotropically distributed velocities and micrometeoroids in retrograde orbits. Other impactor populations, namely those originating in the Jovian system, or interplanetary projectiles with low orbital eccentricities and inclinations, or interstellar stream particles, can be ruled out by the statistical analysis of the data. The data analysis also suggests that the mean ejecta velocity angle to the normal at the satellite surface is around 30°, which is in agreement with laboratory studies of the hypervelocity impacts.  相似文献   

8.
Tanyu Bonev  Klaus Jockers 《Icarus》2008,197(1):183-202
Three continuum images of Comet C/2000 WM1 (LINEAR) obtained on Nov 10, Nov 19, and Dec 03, 2001, are analyzed with the aid of a dynamical model, i.e. with a model that uses the size-dependent motion of dust grains under solar radiation pressure to determine the dust size distribution and its temporal change. The frames are photometrically calibrated in terms of the albedo filling factor product. On Nov 20.2 the Earth transited the orbital plane of the comet and an anti-tail was recognized in the image of Nov 19. For the determination of the particle fluxes describing the contribution of monodisperse particle shells to the cometary brightness the model uses a new regularization method employing Chebyshev polynomials of selected orders in emission time and particle size. It guarantees positiveness of the particle fluxes and imposes a varying degree of smoothness on their dependence on particle size and emission time. The particle emission velocities are still derived by trial and error. The dynamical model is described in detail. Results are presented for several low orders of the Chebyshev polynomials and are compared in order to understand the limitations imposed by the regularization process. The size distributions derived from the different observations do not always agree. This is particularly true for the earliest and most recent synchrones contributing to an image. In the observations of Nov 10 and Dec 03, i.e. excluding the anti-tail image, the integrated mass loss strongly decreases in the most recent time steps of the model although the comet is still approaching the Sun. This is interpreted as an artifact introduced by the overlap of the shells of large particle size emitted shortly before the observation. The model derives an increasing number of small particles released by the comet in the second half of November. This is at least in part considered as real and attributed to particle fragmentation occurring when the comet was at a heliocentric distance of about 1.4 AU.  相似文献   

9.
In order to assess the contribution of Lyman break galaxies (LBGs) and Lyman α emitters (LAEs) at redshifts  3 < z < 7  to the ionization of intergalactic medium (IGM), we investigate the escape fractions of ionizing photons from supernova-dominated primordial galaxies by solving the three-dimensional (3D) radiative transfer. The model galaxy is employed from an ultra-high-resolution chemodynamic simulation of a primordial galaxy by Mori & Umemura, which well reproduces the observed properties of LAEs and LBGs. The total mass of model galaxy is  1011 M  . We solve not only photoionization but also collisional ionization by shocks. In addition, according to the chemical enrichment, we incorporate the effect of dust extinction, taking the size distributions of dust into account. As a result, we find that dust extinction reduces the escape fractions by a factor of 1.5–8.5 in the LAE phase and by a factor of 2.5–11 in the LBG phase, while the collisional ionization by shocks increases the escape fractions by a factor of  ≈2  . The resultant escape fractions are 0.07–0.47 in the LAE phase and 0.06–0.17 in the LBG phase. These results are well concordant with the recent estimations derived from the flux density ratio at 1500 to 900 Å of LAEs and LBGs. Combining the resultant escape fractions with the luminosity functions of LAEs and LBGs, we find that high- z LAEs and LBGs can ionize the IGM at   z = 3–5  . However, ionizing radiation from LAEs as well as LBGs falls short of ionizing the IGM at   z > 6  . That implies that additional ionization sources may be required at   z > 6  .  相似文献   

10.
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L?=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.  相似文献   

11.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

12.
We present 1- to 5-μm broadband and CVF images of comet Hale-Bopp taken 1997 February 10.5 UT, 50 days before perihelion. All the images exhibit a nonspherical coma with a bright “ridge” in the direction of the dust tail approximately 10″ from the coma. Synthetic aperture spectrophotometry implies that the optically important grains are of a radius ≤0.4 μm; smallest radius for any comet seen to date. The variation of the integrated surface brightness with radial distance from the coma (ρ) in all the images closely follows the “steady state” ρ−1 model for comet dust ablation (Gehrz and Ney, 1992). The near-infrared colors taken along the dust tail are not constant implying the dust grain properties vary with coma distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Sekanina  S.  Boehnhardt  H. 《Earth, Moon, and Planets》1997,78(1-3):313-319
A Monte Carlo image simulation code for dust features in comets is applied to comet Hale-Bopp in order to model the object's persistent porcupine-like appearance on high-resolution images taken between May 11 and Nov. 2, 1996. A self-consistent fan model is proposed, with six isolated sources of dust emission assumed at various locations on the surface of the rotating nucleus and with the spin axis undergoing a complex motion in an inertial coordinate system. In the framework of this model, jet pairs represent boundaries of fan-shaped formations described by dust ejected from isolated sources during periods of time when the Sun is above the local horizon. The spin axis is found to have traveled through a field of 10° by 20° during the examined period of nearly six months. Still more successful is a fan model with large diurnal dust-emission fluctuations, which is consistent with an inertially fixed position of the spin axis and requires only three discrete sources. In this scenario, the dust-emission profile is dominated by several brief flare-ups, or “puffs”, in the production of dust from one of the sources. The results are insensitive to the spin rate, but the observed dust coma appearance is more typical of a rapidly rotating comet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850-μm flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60-, 100-μm ( IRAS ) and 850-μm (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450-μm data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model – two temperature components are now required. Using our 450-μm data and fluxes from the literature, we find that the 450/850-μm flux ratio for the galaxies is remarkably constant, and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGs) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ∼2 and the cold dust component has a similar temperature in all galaxies     . The 60-μm luminosities of the galaxies were found to depend on both the dust mass and the relative amount of energy in the warm component, with a tendency for the temperature effects to dominate at the highest L 60. The dust masses estimated using the new temperatures are higher by a factor of ∼2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.  相似文献   

16.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   

17.
18.
19.
In this paper, we present and discuss a new Monte Carlo approach aimed at correcting the observed supernova (SN) rates for the effects of host galaxy dust extinction. The problem is addressed in a general way and the model includes SN position distributions, SN light-curve and spectral library and dust properties and distribution as input ingredients. Even though the recipe we propose is in principle applicable to all SN types, in this paper, we illustrate the use of our model only for Type Ia. These represent, in fact, the simplest test case, basically due to their spectroscopic homogeneity, which to a first approximation allows one to treat them all in the same way. This test case shows that the final results do not depend critically on the spiral arm dust geometry, while the total amount of dust, its properties and the size of the Galactic bulge do have a strong effect. With the availability of more complete spectral libraries and a more accurate knowledge of SN spatial distribution, the method we propose here can be easily extended to core collapse events.  相似文献   

20.
Sporadic meteoroids are the most abundant yet least understood component of the Earth's meteoroid complex. This paper aims to build a physics-based model of this complex calibrated with five years of radar observations. The model of the sporadic meteoroid complex presented here includes the effects of the Sun and all eight planets, radiation forces and collisions. The model uses the observed meteor patrol radar strengths of the sporadic meteors to solve for the dust production rates of the populations of comets modeled, as well as the mass index. The model can explain some of the differences between the meteor velocity distributions seen by transverse versus radial scatter radars. The different ionization limits of the two techniques result in their looking at different populations with different velocity distributions. Radial scatter radars see primarily meteors from 55P/Tempel-Tuttle (or an orbitally similar lost comet), while transverse scatter radars are dominated by larger meteoroids from the Jupiter-family comets. In fact, our results suggest that the sporadic complex is better understood as originating from a small number of comets which transfer material to near-Earth space quite efficiently, rather than as a product of the cometary population as a whole. The model also sheds light on variations in the mass index reported by different radars, revealing it to be a result of their sampling different portions of the meteoroid population. In addition, we find that a mass index of s=2.34 as observed at Earth requires a shallower index (s=2.2) at the time of meteoroid production because of size-dependent processes in the evolution of meteoroids. The model also reveals the origin of the 55° radius ring seen centered on the Earth's apex (a result of high-inclination meteoroids undergoing Kozai oscillation) and the central condensations seen in the apex sources, as well as providing insight into the strength asymmetry of the helion and anti-helion sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号