首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The potential for in situ biodegradation of tert‐butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base. In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 d. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site‐calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 d and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA‐degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically degradable aquifer contaminants.  相似文献   

2.
A preliminary field performance evaluation of in situ bioremediation of a contaminated aquifer at the Libby, Montana, Superfund site, a former wood preserving site, was conducted for the Bioremediation Field Initiative sponsored by the U.S. Environmental Protection Agency (U.S. EPA). The current approach for site remediation involves injecting oxygen and nutrients into the aquifer to stimulate microbial degradation of target compounds that include polycyclic aromatic hydrocarbons and pentachlorophenol. The preliminary field evaluation determined that, in addition to the oxygen demand associated with the microbial oxidation of the organic contamination, uncontaminated aquifer sediments at the site are naturally reduced and also exert a significant oxygen demand. This conclusion is supported by three types of information: (1) analyses of ground water samples; (2) results from a field-scale tracer test; and (3) results of laboratory evaluations of oxygen use by reduced aquifer sediment samples. An estimate of the cost of supplying hydrogen peroxide to satisfy the oxygen demand of the uncontaminated reduced sediments is provided to demonstrate that the additional cost of oxidizing the reduced sediments could be significant. The presence of naturally occurring reduced sediments at a contamination site should be considered in the design of subsurface oxidant delivery systems.  相似文献   

3.
Oxygen probes developed to measure in situ oxygen concentrations in gaseous and aqueous environments were evaluated in laboratory tests and during long-term field evaluation trials at contaminated sites. The oxygen probes were shown to have a linear calibration and to be accurate compared to conventional dissolved oxygen electrodes and gas chromatography, both of which require labor-intensive sample collection and processing. The probes, once calibrated, required no maintenance or recalibration for up to a period of 7 years in low-oxygen environments, demonstrating long-term stability. Times to achieve 90% of the stabilized concentration ( t 90) after a step change in aqueous oxygen concentration were 100–120 min in laboratory experiments and up to 180 min in field experiments, which is adequate for monitoring subsurface changes. Field application data demonstrated that the oxygen probes could monitor oxygen concentrations in hydrocarbon-contaminated ground water to a depth of 20 m below the water table or in pyritic vadose zones over extended periods. During bioremediation field trials, oxygen monitoring enabled estimation of oxygen utilization rates by microorganisms and hydrocarbon biodegradation rates. Also, probes were able to monitor the development of ground water desaturation during air sparging trials, enabling the automated assessment of the distribution of injected air.  相似文献   

4.
Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer   总被引:8,自引:0,他引:8  
Inadvertent release of petroleum products such as gasoline into the subsurface can initiate ground water contamination, particularly by the toxic, water-soluble and mobile gasoline components: benzene, toluene and xylenes (BTX). This study was undertaken to examine the processes controlling the rate of movement and the persistence of dissolved BTX in ground water in a shallow, unconfined sand aquifer.
Water containing about 7.6 mg/ L total BTX was introduced below the water table and the migration of contaminants through a sandy aquifer was monitored using a dense sampling network. BTX components migrated slightly slower than the ground water due to sorptive retardation. Essentially all the injected mass of BTX was lost within 434 days due to biodegradation. Rates of mass loss were similar for all monoaromatics; benzene was the only component to persist beyond 270 days. Laboratory biodegradation experiments produced similar rates, even when the initial BTX concentration varied.
A dominant control over BTX biodegradation was the availability of dissolved oxygen. BTX persisted at the field site in layers low in dissolved oxygen. Decreasing mass loss rates over time observed in the field experiment are not likely due to first-order deeradation rates, but rather to the persistence of small fractions of BTX mass in anoxic layers.  相似文献   

5.
Ground water scientists have made significant advances in understanding the soil interactions, hydrogeology, fate and transport, and subsurface microbiology of aromatic hydrocarbons (BTEX) in aquifer systems. It is now generally recognized that a major factor responsible for the attenuation and mass reduction of BTEX in plumes is the widespread occurrence of hydrocarbon biodegradation by indigenous soil microorganisms in aquifer material. Most well-studied BTEX plumes that develop from the accidental release of gasoline fuels contain low levels of soluble hydrocarbons (< 1 to 5000 ppb) and have been shown to be spatially confined because of natural biotransformation mechanisms. These in situ processes are controlled by source and aquifer characteristics, permeability, sorption, and geochemical properties of the aquifer. Many laboratory subsoil-ground water microcosms and field studies (10 to 20 C) have demonstrated the rapid biodecay (1 to SO percent/day for microcosms and 0.5 to 1.5 percent/day for plumes) of these aromatic compounds under primarily aerobic conditions (i.e., those with sufficient dissolved oxygen). The ability to implement ground water bioremediation will depend upon our understanding of source control and aquifer recharge effects on the spatial distribution of plumes. In addition, estimating the biodegradation of sorbed BTEX, determining limits and potential for in situ biostimulation of soluble plumes, and establishing data requirements for predictive modeling of natural attenuation will be useful for this remediation technology. The use of these tools to manage ground water quality appears to represent the most practical alternative, particularly for low-risk ground water supplies.  相似文献   

6.
Mineralization of 14C‐radiolabled vinyl chloride ([1,2‐14C] VC) and cis‐dichloroethene ([1,2‐14C] cis‐DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene‐exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo‐first‐order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First‐order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen‐linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen‐linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.  相似文献   

7.
A vertical soil column setup integrated with wetlands is developed to study the biodegradation and transport of toluene, a light non‐aqueous phase liquid (LNAPL), in the subsurface environment. LNAPL‐contaminated water is applied to infiltrate from the top of the soil column. The observed and simulated breakthrough curves show high equilibrium concentration at top ports rather than at lower ports, indicating effective toluene biodegradation with soil depth. The observed equilibrium concentration of toluene is higher in the case of unplanted wetland, asserting an accelerated biodegradation rate in the planted case. A difference in the relative concentration of toluene between input and output fluxes at 100 h is found as 13.34% and 30.86% for planted and unplanted wetland setups, respectively. Estimated biodegradation rates show that toluene degradation is 2.5 times faster in the planted wetland setup. In addition, the difference in the observed bacterial count and dissolved oxygen prove that toluene degraded aerobically at a faster rate in the planted setup. Simulations show that as time reached 80–100 h, there is no significant change in concentration profile, thereby confirming the equilibrium condition. The results of this study will be useful to frame plant‐assisted bioremediation techniques for LNAPL‐contaminated soil–water resources in the field.  相似文献   

8.
The spatial variation in methyl tert-butyl ether (MTBE) biodegradation activity of aquifer solids samples collected in the vicinity of a flow-through aerobic biobarrier was assessed through use of standard laboratory microcosms. These were prepared by collecting soil cores at a range of locations and depths along different flow paths through the biobarrier. Sections of core samples were placed in sealed bottles with MTBE-free groundwater from the site. The groundwater was filtered to remove microbes, and sparged with O2. The initial MTBE concentration in the microcosms was adjusted to about 1 mg/L. Biodegradation activity was characterized by the magnitude of MTBE concentration reductions occurred over 4 weeks relative to control microcosms. Sampling locations and depths were selected to allow investigation of relationships between MTBEdegrading activity and dissolved oxygen (DO) concentration, MTBE, soil type, and initial microbial conditions (biostimulated vs. bioaugmented). The results suggest a relatively wide-spread presence of MTBE-degrading microbial consortia, with varying levels of MTBE-degrading activity. Significant changes in activity were observed over 0.3-m vertical distances in the same location; for example, cores from the most upgradient sampling locations contained sections with no discernible MTBEbiodegradation over 4 weeks, as well as sections that achieved order-of-magnitude MTBE concentration reductions within 2 weeks. None of those cores, however, achieved MTBE biodegradation to nondetect levels (<0.005 mg/L), as was observed in some cores from downgradient locations. Cores from the bioaugmented regions had the highest frequency of MTBE biodegradation to nondetect levels among their sections suggesting a direct effect of the inoculum and its distribution when it was implanted. Most cores with no activity were associated with the upgradient, low-DO, and high-MTBE concentration field environments, but low-DO field environments also yielded MTBE-degrading samples. There were no other clear correlations between MTBE-degrading activity in the microcosms and the local field environment conditions at the time of sampling.  相似文献   

9.
Xu R  Yong LC  Lim YG  Obbard JP 《Marine pollution bulletin》2005,51(8-12):1101-1110
Nutrient concentration and hydrocarbon bioavailability are key factors affecting biodegradation rates of oil in contaminated beach sediments. The effect of a slow-release fertilizer, Osmocote, as well as two biopolymers, chitin and chitosan, on the bioremediation of oil-spiked beach sediments was investigated using an open irrigation system over a 56-day period under laboratory conditions. Osmocote was effective in sustaining a high level of nutrients in leached sediments, as well as elevated levels of microbial activity and rates of hydrocarbon biodegradation. Chitin was more biodegradable than chitosan and gradually released nitrogen into the sediment. The addition of chitin or chitosan to the Osmocote amended sediments enhanced biodegradation rates of the alkanes relative to the presence of Osmocote alone, where chitosan was more effective than chitin due to its greater oil sorption capacity. Furthermore, chitosan significantly enhanced the biodegradation rates of all target polycyclic aromatic hydrocarbons.  相似文献   

10.
The effects of adding oxygen to anaerobic aquifer materials on biodegradation of phenoxy acid herbicides were studied by laboratory experiments with aquifer material from two contaminated sites (a former agricultural machinery service and an old landfill). At both sites, the primary pollutants were phenoxy acids and related chlorophenols. It was found that addition of oxygen enhanced degradation of the six original phenoxy acids and six original chlorophenols. Inverse modeling on 14C 4-chloro-2-methylphenoxypropanoic acid (MCPP) degradation curves revealed that increasing the oxygen concentrations from <0.3 mg/L up to 7 to 8 mg/L shortened the lag phases (from approximately 150 d to 5 to 25 d) and increased first-order degradation rate constants by 1 order of magnitude (from approximately 5 x 10(-2) d(-1) to up to 30 x 10(-2) d(-1)). Additionally, the degree of MCPP mineralization was increased (30% to 50% mineralized at low oxygen concentrations and 50% to 70% mineralized at high oxygen concentrations, based on 14CO2 recovery). These positive effects on degradation were observed even at relatively low oxygen concentrations (2 mg/L). Furthermore, effects related to the addition of oxygen on the general geochemistry were studied. An oxygen consumption of 2.2 to 2.6 mg O2/g dw was observed due to oxidation of solid organic matter and, to some extent (0.5% to 11% of the total oxygen consumption), water-soluble compounds such as Fe2+, dissolved Mn, nonvolatile organic carbon, and NH4+. Overall, the results suggest that stimulated biodegradation by addition of oxygen might be a feasible remediation technology at herbicide-contaminated sites, although oxygen consumption by the sediment could limit the applicability.  相似文献   

11.
The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump‐and‐skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore‐scale capillary pressure‐saturation hysteresis and the presence of fine‐grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound‐specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field‐scale reaction rates and hydrocarbon mass balance. Long‐term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap‐shot study of a hydrocarbon plume may not provide information that is of relevance to the long‐term behavior of the plume during natural attenuation.  相似文献   

12.
It has been observed that the field biodegradation rates for soluble hydrocarbon plumes are significantly smaller than the aerobic rates observed in the laboratory. It is believed that this difference is related to the fact that in the field oxygen and hydrocarbon must be mixed before the biodegradation reaction can occur, and that the effective degradation rate is controlled by the actual, not mean, concentrations of oxygen and hydrocarbon. In this work, we present a conceptual model of oxygen-mixing limited biodegradation, which indicates that the effective degradation rate should depend on the cross correlation between the oxygen and hydrocarbon concentration fluctuations. This is followed by a development of a rigorous, field-scale model.  相似文献   

13.
In Situ Biorestoration as a Ground Water Remediation Technique   总被引:1,自引:0,他引:1  
In situ biorestoration, where applicable, is indicated as a potentially very cost-effective and environmentally acceptable remediation technology. Many contaminants in solution in ground water as well as vapors in the unsaturated zone can be completely degraded or transformed into new compounds by naturally occurring indigenous microbial populations. Undoubtedly, thousands of contamination events are remediated naturally before the contamination reaches a point of detection. The need is for methodology to determine when natural biorestoration is occurring, the stage the restoration process is in, whether enhancement of the process is possible or desirable, and what will happen if natural processes are allowed to run their course.
In addition to the nature of the contaminant, several environmental factors are known to influence the capacity of indigenous microbial populations to degrade contaminants. These factors include dissolved oxygen, pH, temperature, oxidation-reduction potential, availability of mineral nutrients, salinity, soil moisture, the concentration of specific pollutants, and the nutritional quality of dissolved organic carbon in the ground water.
Most enhanced in situ bioreclamation techniques available today are variations of hydrocarbon degradation procedures pioneered and patented by Raymond and coworkers at Suntech during the period 1974 to 1978. Nutrients and oxygen are introduced through injection wells and circulated through the contaminated zone by pumping one or more producing wells.
The limiting factor in remediation technology is getting the contaminated subsurface material to the treatment unit or units, or in the case of in situ processes, getting the treatment process to the contaminated material. The key to successful remediation is a thorough understanding of the hydrogeologic and geochemical characteristics of the contaminated area.  相似文献   

14.
It has been observed that the field biodegradation rates for soluble hydrocarbon plumes are significantly smaller than the aerobic rates observed in the laboratory. It is believed that this difference is related to the fact that in the field oxygen and hydrocarbon must be mixed before the biodegradation reaction can occur, and that the effective degradation rate is controlled by the actual, not mean, concentrations of oxygen and hydrocarbon. In this work, we present a conceptual model of oxygen-mixing limited biodegradation, which indicates that the effective degradation rate should depend on the cross correlation between the oxygen and hydrocarbon concentration fluctuations. This is followed by a development of a rigorous, field-scale model.  相似文献   

15.
This research demonstrates that groundwater contaminated by a relatively dilute but persistent concentration of 1,4‐dioxane (1,4‐D), approximately 60 μg/L, and chlorinated aliphatic co‐contaminants (1.4 to 10 μg/L) can be efficiently and reliably treated by in situ aerobic cometabolic biodegradation (ACB). A field trial lasting 265 days was conducted at Operable Unit D at the former McClellan Air Force Base and involved establishing an in situ ACB reactor through amending recirculated groundwater with propane and oxygen. The stimulated indigenous microbial population was able to consistently degrade 1,4‐D to below 3 μg/L while the co‐contaminants trichloroethene (TCE) and 1,2‐dichloroethane (1,2‐DCA) were decreased to below 1 μg/L and 0.18 μg/L, respectively. A stable treatment efficiency of more than 95% removal for 1,4‐D and 1,2‐DCA and of more than 90% removal for TCE was achieved. High treatment efficiencies for 1,4‐D and all co‐contaminants were sustained even without propane and oxygen addition for a 2‐week period.  相似文献   

16.
The occurrence of aerobic biodegradation in the vadose zone between a subsurface source and a building foundation can all-but eliminate the risks from methane and petroleum vapor intrusion (PVI). Understanding oxygen availability and the factors that affect it (e.g., building sizes and their distribution) are therefore critical. Uncovered ground surfaces allow oxygen access to the subsurface to actively biodegrade hydrocarbons (inclusive of methane). Buildings can reduce the net flux of oxygen into the subsurface and so reduce degradation rates. Here we determine when PVI and methane risk is negligible and/or extinguished; defined by when oxygen is present across the entire sub-slab region of existing or planned slab-on-ground buildings. We consider all building slab sizes, all depths to vapor sources and the effect of spacings between buildings on the availability of oxygen in the subsurface. The latter becomes critical where buildings are in close proximity or when increased building density is planned. Conservative assumptions enable simple, rapid and confident screening should sites and building designs comply to model assumptions. We do not model the aboveground “building” processes (e.g., air exchange), and assume the slab-on-ground seals the ground surface so that biodegradation of hydrocarbons is minimized under the built structure (i.e., the assessment remains conservative). Two graphs represent the entirety of the outcomes that allow simple screening of hydrocarbon vapors based only on the depth to the source of vapors below ground, the concentration of vapors within the source, the width of the slab-on-ground building, and the gap between buildings; all independent of soil type. Rectangular, square, and circular buildings are considered. Comparison with field sites and example applications are provided, along with a simple 8-step screening guide set in the context of existing guidance on PVI assessment.  相似文献   

17.
Diisopropanolamine Biodegradation Potential at Sour Gas Plants   总被引:1,自引:0,他引:1  
The potential for aerobic and anaerobic biodegradation of a sour gas treatment chemical, diisopropanolamine (DIPA), was studied using contaminated aquifer materials from three sour gas treatment sites in western Canada. DIPA was found to be readily consumed under aerobic conditions at 8°C and 28°C in shake flask cultures incubated with aquifer material from each of the sites, and this removal was characterized by first-order kinetics. In addition, DIPA biodegradation was found to occur under nitrate-, Min(IV)., and Fe(III)-reducing conditions at 28°C, and in some cases at 8°C, in laboratory microcosms, DIPA loss corresponded to consumption of nitrate, and production of Mn(II) and Fe(II) in viable microcosms compared to corresponding sterile controls. A threshold DIPA concentration near 40 mg/L was observed in the anaerobic microcosms. This report provides the first evidence that DIPA is biodegraded under anaerobic conditions, and our data suggest that biodegradation may contribute to DIPA attenuation under aerobic and anaerobic conditions in aquifers contaminated with this sour gas treatment chemical.  相似文献   

18.
Benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons are typically the most abundant carbon source for bacteria in gasoline-contaminated ground water. In situ bioremediation strategies often involve stimulating bacterial heterotrophic production in an attempt to increase carbon demand of the assemblage. This may, in turn, stimulate biodegradation of contaminant hydrocarbons. In this study, ground water circulation wells (GCWs) were used as an in situ treatment for a fuel-contaminated aquifer to stimulate bacterial production, purportedly by increasing oxygen transfer to the subsurface, circulating limiting nutrients, enhancing bioavailability of hydrocarbons, or by removing metabolically inhibitory volatile organics. Bacterial production, as measured by rates of bacterial protein synthesis, was stimulated across the zone of influence (ZOI) of a series of GCWs. Productivity increased from ∼102 to >105 ng C/L hour across the ZOI, suggesting that treatment stimulated overall biodegradation of carbon sources present in the ground water. However, even if BTEX carbon met all bacterial carbon demand, biodegradation would account for <4.3% of the total estimated BTEX removed from the ground water. Although bacterial productivity measurements alone cannot prove the effectiveness of in situ bioremediation, they can estimate the maximum amount of contaminant that may be biodegraded by a treatment system.  相似文献   

19.
Petroleum hydrocarbon vapors biodegrade aerobically in the subsurface. Depth profiles of petroleum hydrocarbon vapor and oxygen concentrations from seven locations in sandy and clay soils across four states of Australia are summarized. The data are evaluated to support a simple model of biodegradation that can be used to assess hydrocarbon vapors migrating toward built environments. Multilevel samplers and probes that allow near‐continuous monitoring of oxygen and total volatile organic compounds (VOCs) were used to determine concentration depth profiles and changes over time. Collation of all data across all sites showed distinct separation of oxygen from hydrocarbon vapors, and that most oxygen and hydrocarbon concentration profiles were linear or near linear with depth. The low detection limit on the oxygen probe data and because it is an in situ measurement strengthened the case that little or no overlapping of oxygen and hydrocarbon vapor concentration profiles occurred, and that indeed oxygen and hydrocarbon vapors were largely only coincident near the location where they both decreased to zero. First‐order biodegradation rates determined from all depth profiles were generally lower than other published rates. With lower biodegradation rates, the overlapping of depth profiles might be expected, and yet such overlapping was not observed. A model of rapid (instantaneous) reaction of oxygen and hydrocarbon vapors compared to diffusive transport processes is shown to explain the important aspects of the 13 depth profiles. The model is simply based on the ratio of diffusion coefficients of oxygen and hydrocarbon vapors, the ratio of the maximum concentrations of oxygen and hydrocarbon vapors, the depth to the maximum hydrocarbon source concentration, and the stoichiometry coefficient. Whilst simple, the model offers the potential to incorporate aerobic biodegradation into an oxygen‐limited flux‐reduction approach for vapor intrusion assessments of petroleum hydrocarbon compounds.  相似文献   

20.
A field study of oxygen-enhanced biodegradation was carried out in a sandy iron-rich ground water system contaminated with gasoline hydrocarbons. Prior to the oxygen study, intrinsic microbial biodegradation in the contaminant plume had depleted dissolved oxygen and created anaerobic conditions. An oxygen diffusion system made of silicone polymer tubing was installed in an injection well within an oxygen delivery zone containing coarse highly permeable sand. During the study, this system delivered high dissolved oxygen (DO) levels (39 mg/L) to the ground water within a part of the plume. The ground water was sampled at a series of monitors in the test zone downgradient of the delivery well to determine the effect of oxygen on dissolved BTEX, ground water geochemistry, and microbially mediated biodegradation processes. The DO levels and Eh increased markedly at distances up to 2.3 m (7.5 feet) downgradient. Potential biofouling and iron precipitation effects did not clog the well screens or porous medium. The increased dissolved oxygen enhanced the population of aerobes while the activity of anaerobic sulfate-reducing bacteria and methanogens decreased. Based on concentration changes, the estimated total rate of BTEX biodegradation rose from 872 mg/day before enhancement to 2530 mg/day after 60 days of oxygen delivery. Increased oxygen flux to the test area could account for aerobic biodegradation of 1835 mg/day of the BTEX. The estimated rates of anaerobic biodegradation processes decreased based on the flux of sulfate, iron (II), and methane. Two contaminants in the plume, benzene and ethylbenzene, are not biodegraded as readily as toluene or xylenes under anaerobic conditions. Following oxygen enhancement, however, the benzene and ethylbenzene concentrations decreased about 98%, as did toluene and total xylenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号