首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The complex fluvial sandstones of the Triassic Skagerrak Formation are the host reservoir for a number of high-pressure, high-temperature (HPHT) fields in the Central Graben, North Sea. All the reservoir sandstones in this study comprise of fine-grained to medium-grained sub-arkosic to arkosic sandstones that have experienced broadly similar burial and diagenetic histories to their present-day maximum burial depths. Despite similar diagenetic histories, the fluvial reservoirs show major variations in reservoir quality and preserved porosity. Reservoir quality varies from excellent with anomalously high porosities of up to 35% at burial depth of >3500 m below seafloor to non-economic with porosities <10% at burial depth of 4300 m below seafloor.This study has combined detailed petrographic analyses, core analysis and pressure history modelling to assess the impact of differing vertical effective stresses (VES) and high pore fluid pressures (up to 80 MPa) on reservoir quality. It has been recognised that fluvial channel sandstones of the Skagerrak Formation in the UK sector have experienced significantly less mechanical compaction than their equivalents in the Norwegian sector. This difference in mechanical compaction has had a significant impact upon reservoir quality, even though the presence of chlorite grain coatings inhibited macroquartz cement overgrowths across all Skagerrak Formation reservoirs. The onset of overpressure started once the overlying Chalk seal was buried deeply enough to form a permeability barrier to fluid escape. It is the cumulative effect of varying amounts of overpressure and its effect on the VES history that is key to determining the reservoir quality of these channelised sandstone units. The results are consistent with a model where vertical effective stress affects both the compaction state and subsequent quartz cementation of the reservoirs.  相似文献   

2.
This paper investigates the reservoir potential of deeply-buried Eocene sublacustrine fan sandstones in the Bohai Bay Basin, China by evaluating the link between depositional lithofacies that controlled primary sediment compositions, and diagenetic processes that involved dissolution, precipitation and transformation of minerals. This petrographic, mineralogical, and geochemical study recognizes a complex diagenetic history which reflects both the depositional and burial history of the sandstones. Eogenetic alterations of the sandstones include: 1) mechanical compaction; and 2) partial to extensive non-ferroan carbonate and gypsum cementation. Typical mesogenetic alterations include: (1) dissolution of feldspar, non-ferroan carbonate cements, gypsum and anhydrite; (2) precipitation of quartz, kaolinite and ferroan carbonate cements; (3) transformation of smectite and kaolinite to illite and conversion of gypsum to anhydrite. This study demonstrates that: 1) depositional lithofacies critically influenced diagenesis, which resulted in good reservoir quality of the better-sorted, middle-fan, but poor reservoir quality in the inner- and outer-fan lithofacies; 2) formation of secondary porosity was spatially associated with other mineral reactions that caused precipitation of cements within sandstone reservoirs and did not greatly enhance reservoir quality; and 3) oil emplacement during early mesodiagenesis (temperatures > 70 °C) protected reservoirs from cementation and compaction.  相似文献   

3.
Whilst the relationship between stratigraphic development and carbonate cementation within siliciclastic succession has been documented through a number case studies, these studies have been generally restricted to observations upon individual sequences and/or limited sub-surface data. In this paper, long-term (5 million years), large-scale (>200 km) stratigraphic controls on carbonate cementation patterns are documented from the Upper Cretaceous Panther Tongue Member, Blackhawk Formation and Castlegate Sandstone exposed in the Book Cliffs in Utah and Colorado, USA. Together, these comprise eight progradational wedges of sandstones, which interfinger with the Mancos Shale, deposited within the Western Interior Seaway foreland basin. Petrographic analyses of ferroan dolomite cement bodies within these sandstone wedges show that the ferroan dolomite cements are all early, relative to burial diagenesis within the host sandstones. Stable isotope analyses indicates that a significant meteoric component was present in precipitating fluids and this is consistent with the observation that cements, are always present down-dip of sequence boundaries and/or leached whitecaps beneath coals. In addition, the lateral distribution of cement bodies increases consistently up-succession from less than 5 km in extent in the older sequences, to 30 km in extent in the youngest sequences. These changes in distribution are in response to the increased progradation and increased and more aerially extensive sequence-boundary development in younger sequences. The implications of these data are that whilst localized spatial patterns of diagenesis, and in particular carbonate cementation, are predictable and controlled by the nature and presence of individual stratal surfaces, systematic diagenetic alteration patterns are also present at the sedimentary basin scale and controlled by the nature of larger-scale stratigraphic development and basin evolution. This evolution may be driven by eustatic shifts, or through tectonic or climatic driven base-level shifts. These observations allow an improved insight into the basin-scale processes that control the macroscopic diagenetic properties of sedimentary successions and sub-surface hydrocarbon reservoirs.  相似文献   

4.
The complex burial and diagenetic histories of the Jurassic Fulmar and Triassic Skagerrak sandstones in the UK Central North Sea present significant challenges with regard to reservoir quality and rock property prediction. Commercial reservoir quality is retained despite deep burial and associated high temperatures and pressures. Shallow marine Fulmar sands are normally compacted (mean IGV = 26 ± 3%) yet have porosities of 21–33%. Porosity was preserved through inhibition of quartz cementation by clay and microquartz coatings, and enhanced by dissolution of framework grains (∼5%). Skagerrak fluvial sands are more compacted (mean IGV = 23 ± 2%), exhibit minor feldspar dissolution (<1%), and have porosities of 16–27%. Quartz cement averages only 2 ± 1.5% due to robust chlorite coats that cover 80% (±13%) of quartz surfaces.We modeled reservoir quality evolution using the forward diagenetic model Touchstone, which simulates porosity loss due to compaction and quartz cementation. Quantitative petrographic analyses and burial history data were used to calibrate Touchstone model parameters. The results were applied to deeper prospects for pre-drill prediction of porosity and permeability. In parallel, petrophysical data were used to characterize the elastic properties of the sandstones to provide a basis for quantitative seismic forward modeling. Experimental data and core-calibrated petrophysical results, reflecting variable in situ fluids and saturations, were used to build an elastic properties model. The model is robust and was used to generate fluid-filled sandstone properties, incorporating Touchstone results, for prospect-specific seismic attribute modeling. Well results from exploration wells are in good agreement with pre-drill Touchstone and elastic properties model predictions.  相似文献   

5.
The Tournasian age Pekisko carbonates in the Normandville Field (northwestern Alberta) form waulsortian-like, bryozoan/crinoid mounds that developed in fairly deep, low energy, cool water systems, close to the ramp margin. Three main depositional environments occur: (1) crinoidal apron with wackestone, grainstone and floatstone facies; (2) mound flank with grainstone, wackestone, packstone and floatstone facies dipping 35°; and (3) bryozoan mound core, composed of rudstone and floatstone facies with fenestrate bryozoa, minor crinoids and carbonate mud. Local highs due to fault-bounded blocks, created from the collapse of the Devonian Peace River High, may have controlled the location of mound nucleation.Diagenesis of the bryozoan/crinoid mounds included calcite cementation, compaction, dolomitization, silicification, and hydrocarbon emplacement events. The mound core facies contains submarine fascicular optic calcite and bladed/prismatic calcite cements, and later ferroan, brightly luminescent, pore-filling blocky spar cement. The crinoid apron facies contains syntaxial cement associated with crinoids, and the ferroan blocky spar cement. The mounds are dominantly limestone; however, in one well, dolomite dominates the lower section. Four types of dolomite have been identified: partial replacive; chemical-compaction-related, pervasive dolomite and saddle dolomite cement. All dolomites are non-stoichiometric (CaCO3 mole% 56.6–62.6). The partial, zoned replacive dolomite replaces micrite and syntaxial rim calcite in mound flank and crinoid apron facies. The chemical compaction-related dolomite is found along dissolution seams and stylolites and has similar CL characteristics to the replacive dolomite. The pervasive dolomite is fabric destructive and has dull cores and bright rims in CL. Saddle dolomite (0.15 mm) has brightly-luminescent, concentric zoning and occurs in vugs and fossil pore spaces.Chemical and isotopic analysis of the bryozoan/crinoid mounds indicate that the original marine signatures in micrite, early cements, some crinoids and brachiopods have been preserved. However, carbon isotopic values for some crinoids, matrix and dolomite show more positive values compared to known Mississippian carbonate values. Recrystallization during shallow burial has reset the oxygen isotopic composition of some crinoids and micrite. Oxygen and carbon isotopic compositions of most dolomites overlap with altered crinoids and early calcite cements. However, saddle dolomites have lighter δ18O values, similar to saddle dolomites from the Devonian Wabamun Group in this area. The isotopic variations in later ferroan calcite cements show an inverted-J trend, possibly due to variable amounts of water-rock interaction. While the Sr-isotopic ratio of submarine calcite cement coincides with that of Mississippian seawater, the later ferroan calcite cement is more radiogenic, indicating a different source of fluids.  相似文献   

6.
In the Kopet-Dagh Basin of Iran, deep-sea sandstones and shales of the Middle Jurassic Kashafrud Formation are disconformably overlain by hydrocarbon-bearing carbonates of Upper Jurassic and Cretaceous age. To explore the reservoir potential of the sandstones, we studied their burial history using more than 500 thin sections, supplemented by heavy mineral analysis, microprobe analysis, porosity and permeability determination, and vitrinite reflectance.The sandstones are arkosic and lithic arenites, rich in sedimentary and volcanic rock fragments. Quartz overgrowths and pore-filling carbonate cements (calcite, dolomite, siderite and ankerite) occluded most of the porosity during early to deep burial, assisted by early compaction that improved packing and fractured quartz grains. Iron oxides are prominent as alteration products of framework grains, probably reflecting source-area weathering prior to deposition, and locally as pore fills. Minor cements include pore-filling clays, pyrite, authigenic albite and K-feldspar, and barite. Existing porosity is secondary, resulting largely from dissolution of feldspars, micas, and rock fragments, with some fracture porosity. Porosity and permeability of six samples averages 3.2% and 0.0023 mD, respectively, and 150 thin-section point counts averaged 2.7% porosity. Reflectance of vitrinite in eight sandstone samples yielded values of 0.64-0.83%, in the early mature to mature stage of hydrocarbon generation, within the oil window.Kashafrud Formation petrographic trends were compared with trends from first-cycle basins elsewhere in the world. Inferred burial conditions accord with the maturation data, suggesting only a moderate thermal regime during burial. Some fractures, iron oxide cements, and dissolution may reflect Cenozoic tectonism and uplift that created the Kopet-Dagh Mountains. The low porosity and permeability levels of Kashafrud Formation sandstones suggest only a modest reservoir potential. For such tight sandstones, fractures may enhance the reservoir potential.  相似文献   

7.
The compositions, distribution and its interaction with rocks of the evolving pore fluids controls the distribution of carbonate cements and reservoir storage spaces. The reservoir quality of the red-bed sandstone reservoirs in the Dongying Depression was investigated by an integrated and systematic analysis including carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and fluid inclusions. The investigation was also facilitated by probing the mineral origins, precipitation mechanisms, pore fluid evolution and distribution, and water-rock interaction of carbonate cements and their influences on reservoir quality. Diagenetic-evolving fluids in the interbedded mudstones are the main source for the precipitation of calcite cements that completely fill the intergranular volume (CFIV calcite) with heavier oxygen and carbon isotopes. The ferro-carbonate cements in the reservoir sandstone are enriched in lighter carbon and oxygen isotopes. In addition to the cations released by the conversion of clay minerals in reservoirs, products of organic acid decarboxylation and the associated feldspar dissolution process provide important sources for such carbonate cementation. The carbon isotopes of CO2 and the oxygen isotopic composition of fluids equilibrated with the CFIV calcite, ferro-calcite, dolomite and ankerite cements indicate that the pore in the red-bed reservoirs experienced high salinity fluids, which evolved from the early-formed interbedded mudstones, through organic acid input and to organic acid decarboxylation. Pore fluids from nearby mudstones migrated from the edge to the centre of sandbodies, causing strong calcite cementation along the sandbody boundaries and forming tight cementation zones. Pore fluids associated with organic CO2 and acids and organic acid decarboxylation are mainly distributed in the internal portion of sandbodies, causing feldspar dissolution and precipitation of ferro-carbonate cements. The distribution of pore fluids caused the zonal distribution of carbonate cements in sandbodies during different periods. This may be advantageous to preserve the porosity of reservoirs as exemplified by the distribution of high-quality reservoirs in the red-bed sandbodies.  相似文献   

8.
Extensive, large-scale pervasive cementation in the form of cement bodies within fluvial strata has rarely been documented although fluvial strata commonly act as important hydrocarbon reservoirs, as well as groundwater aquifers. Here, we present outcrop, petrographic and geochemical data for pervasive ferroan dolomite cement bodies up to 250 m in size from Upper Cretaceous Desert Member and Castlegate Sandstone fluvial strata exposed in the Book Cliffs in Utah. These cement bodies are present with coastal plain fluvial strata within both the Desert and Castlegate lowstand sandstones and are most abundant in the thin, distal fluvial strata. Cement bodies are almost entirely absent in updip, thicker, fluvial strata. Petrographic observations suggest a predominantly early diagenetic timing to the mildly ferroan dolomite, with a component of later burial origin. δ13C values for the cement (+4.8 to −5.7‰ V-PDB) suggest a marine-derived source for the earliest phase with a burial organic matter source for later cement. δ18O data (−6.3 to −11.8‰ V-PDB) suggest precipitation from freshwater dominated fluids. It is proposed here that dolomite was derived from leaching of detrital dolomite under lowstand coals and cementation took place in coastal aquifers experiencing mixed meteoric-marine fluids as a result of base-level fluctuations. This data presented here shows that large cement bodies can be an important component within fluvial sandstones with a potentially significant impact upon both reservoir quality and fluid flow within reservoirs, especially at the marine-non-marine interface.  相似文献   

9.
There is increasing evidence that quartz cementation can be viewed as a process controlled by temperature and insensitive to effective stress. This view of quartz cementation in sandstones is often referred to as the illite-mica induced dissolution model (IMID), which assumes quartz dissolution to occur along stylolites and clay laminae rather than at quartz-quartz grain contacts. In the present comment it is argued that the exceptional reservoir quality in the Skagerrak Formation of the Heron Cluster, North Sea, is due to grain coatings and rapid Cenozoic burial limiting the exposure to quartz cementation. This line of reasoning implies overpressure has had neglectable porosity preserving effect in the Heron Cluster.  相似文献   

10.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   

11.
Lacustrine deep-water turbidite plays are a novel area for exploration in the Huimin Depression, Bohai Bay Basin. Turbidites in the Shang 847 block, a typical turbidite play in the Huimin Depression, provide an opportunity to study the factors controlling the reservoir properties and hydrocarbon accumulation in lacustrine turbidite sandstones. The reservoir quality of turbidite sandstones (very fine-grained, moderately to well sorted, mainly lithic arkose) in this study area are mainly controlled by the distribution patterns of carbonate cements and pseudomatrix. Significant inverse relationships exist between the volume of carbonate cement and both porosity and permeability of the turbidite sandstones. Carbonate cement is located preferentially near the margins of the sandstone bodies. Sandstones with distance from the sandstone–mudstone contact surface less than 0.7 m or with thickness less than 1.2 m are commonly tightly cemented (carbonate cement >15%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The source of carbonate cement was most likely external, probably derived from the surrounding mudstone. Most pore-filling carbonate cements occurred during late diagenesis at burial depths greater than 2200 m. The petrophysical properties of turbidites have a positive relationship with the content of kaolinite and chlorite, but have a negative relationship with the content of illite. 2-D and 3-D reconstructions of non-oil bearing and oil-bearing layers indicate that dissolution of carbonate cement, feldspars and unstable rock fragments was more developed in oil-bearing layers than in non-oil bearing layers and hance oil-bearing layers have higher porosity and larger pore sizes. Petrophysical property appears to have a significant effect on the hydrocarbon accumulation in the turbidite sandstones. Sandstones with porosities lower than 9% and/or permeabilities lower than 0.78 mD are not prone to contain oil.  相似文献   

12.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

13.
A great difference exists between the hydrocarbon charging characteristics of different Tertiary lacustrine turbidites in the Jiyang Super-depression of the Bohai Bay Basin, east China. Based on wireline log data, core observation and thin-section analyses, this study presents detailed reservoir property data and their controlling effects from several case studies and discusses the geological factors that govern the hydrocarbon accumulation in turbidite reservoirs. The lacustrine fluxoturbidite bodies investigated are typically distributed in an area of 0.5–10 km2, with a thickness of 5–20 m. The sandstones of the Tertiary turbidites in the Jiyang Super-depression have been strongly altered diagenetically by mechanical compaction, cementation and mineral dissolution. The effect of compaction caused the porosity to decrease drastically with the burial depths, especially during the early diagenesis when the porosity was reduced by over 15%. The effect of cementation and mineral dissolution during the late-stage diagenesis is dominated by carbonate cementation in sandstones. High carbonate cement content is usually associated with low porosity and permeability. Carbonate dissolution (secondary porosity zone) and primary calcite dissolution is believed to be related to thermal maturation of organic matter and clay mineral reactions in the surrounding shales and mudstone. Two stages of carbonate cementation were identified: the precipitation from pore-water during sedimentation and secondary precipitation in sandstones from the organic acid-dissolved carbonate minerals from source rocks. Petrophysical properties have controlled hydrocarbon accumulation in turbidite sandstones: high porosity and permeability sandstones have high oil saturation and are excellent producing reservoirs. It is also noticed that interstitial matter content affects the oil-bearing property to some degree. There are three essential elements for high oil-bearing turbidite reservoirs: excellent pore types, low carbonate cement (<5%) and good petrophysical properties with average porosity >15% and average permeability >10 mD.  相似文献   

14.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

15.
Deeply buried (4500–7000 m) Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China show obvious heterogeneity with porosity from null in limestones and sweet dolostones to 27.8% in sour dolostones, from which economically important oils, sour gas and condensates are currently being produced. Petrographic features, C, O, Sr isotopes were determined, and fluid inclusions were analyzed on diagenetic calcite, dolomite and barite from Ordovician reservoirs to understand controls on the porosity distribution. Ordovician carbonate reservoirs in the Tazhong area are controlled mainly by initial sedimentary environments and eo-genetic and near-surface diagenetic processes. However, vugs and pores generated from eogenetic and telogenetic meteoric dissolution were observed to have partially been destroyed due to subsequent compaction, filling and cementation. In some locations or wells (especially ZG5-ZG7 Oilfield nearby ZG5 Fault), burial diagenesis (e.g. thermochemical sulfate reduction, TSR) probably played an important role in quality improvement towards high-quality reservoirs. C2 calcite and dolomite cements and barite have fluid inclusions homogenization temperatures (Ths) from 86 to 113 °C, from 96 to 128 °C and from 128 to 151 °C, respectively. We observed petrographically corroded edges of these high-temperature minerals with oil inclusions, indicating the dissolution must have occurred under deep-burial conditions. The occurrence of TSR within Ordovician carbonate reservoirs is supported by C3 calcite replacement of barite, and the association of sulfur species including pyrite, anhydrite or barite and elemental sulfur with hydrocarbon and 12C-rich (as low as −7.2‰ V-PDB) C3 calcite with elevated Ths (135–153 °C). The TSR may have induced burial dissolution of dolomite and thus probably improved porosity of the sour dolostones reservoirs at least in some locations. In contrast, no significant burial dissolution occurred in limestone reservoirs and non-TSR dolostone reservoirs. The deeply buried sour dolostone reservoirs may therefore be potential exploration targets in Tarim Basin or elsewhere in the world.  相似文献   

16.
The c. 500 m thick Middle Jurassic sandstones of the fluvial Bristol Elv and marine Pelion Formations of the East Greenland Basin are evaluated here in order to improve the understanding of the processes that influenced the diagenetic evolution. The study may help to predict the reservoir properties of sandstones affected by magmatism and faulting, both in general and specifically in undrilled areas on- and offshore East Greenland and, in the Vøring Basin on the Mid-Norwegian shelf. The study shows a variety of authigenic mineral phases dominated by quartz cement, carbonate cement, illite and iron-oxide. One of the clear differences between the two formations is the presence of early carbonate-cemented horizons in the marine sandstones; these horizons are inferred to reflect a primary concentration of biogenic clasts and fossil shells. Intense quartz cementation occurs primarily in the fluvial sandstones but the marine sandstones are also highly quartz-cemented. Two episodes of burial and uplift are recorded in the diagenetic sequence and widespread grain-crushing in coarse-grained intervals is believed to result from overpressure and subsequent compaction due to sudden pressure release along major faults. Maximum burial depths may only have been around 2000–2500 m. Cathodoluminescence analyses show that grain crushing was followed by intense quartz cementation. The quartz cement is to a great deal believed to have formed due to increased surface area from crushing of detrital quartz grains, creating fresh nucleation sites for the quartz. Cathodoluminescence investigations also show that only minor pressure dissolution has taken place between detrital quartz grains and that the ubiquitous quartz cementation displays several growth zones, and was thus in part the result of the introduction of silica-rich extra-formational fluids related to the flow of hot fluids along reactivated faults and increased heat flow and temperature due to magmatism. This interpretation is supported by fluid inclusion homogenization temperatures between 117 and 158 °C in quartz cements. In one of the two study areas, the development of macroscopic stylolites has significantly enhanced quartz cementation, probably in connection with thermal convection flow. As a result of the magmatic and fault-related quartz cementation and illitization, the reservoir quality of the sandstone formations deteriorated and changed drastically.  相似文献   

17.
Reservoir quality and heterogeneity are critical risk factors in tight oil exploration. The integrated, analysis of the petrographic characteristics and the types and distribution of diagenetic alterations in the Chang 8 sandstones from the Zhenjing area using core, log, thin-section, SEM, petrophysical and stable isotopic data provides insight into the factors responsible for variations in porosity and permeability in tight sandstones. The results indicate that the Chang 8 sandstones mainly from subaqueous distributary channel facies are mostly moderately well to well sorted fine-grained feldspathic litharenites and lithic arkose. The sandstones have ultra-low permeabilities that are commonly less than 1 mD, a wide range of porosities from 0.3 to 18.1%, and two distinct porosity-permeability trends with a boundary of approximately 10% porosity. These petrophysical features are closely related to the types and distribution of the diagenetic alterations. Compaction is a regional porosity-reducing process that was responsible for a loss of more than half of the original porosity in nearly all of the samples. The wide range of porosity is attributed to variations in calcite cementation and chlorite coatings. The relatively high-porosity reservoirs formed due to preservation of the primary intergranular pores by chlorite coatings rather than burial dissolution; however, the chlorites also obstruct pore throats, which lead to the development of reservoirs with high porosity but low permeability. In contrast, calcite cementation is the dominant factor in the formation of low-porosity, ultra-low-permeability reservoirs by filling both the primary pores and the pore throats in the sandstones. The eogenetic calcites are commonly concentrated in tightly cemented concretions or layers adjacent to sandstone-mudstone contacts, while the mesogenetic calcites were deposited in all of the intervals and led to further heterogeneity. This study can be used as an analogue to understand the variations in the pathways of diagenetic evolution and their impacts on the reservoir quality and heterogeneity of sandstones and is useful for predicting the distribution of potential high-quality reservoirs in similar geological settings.  相似文献   

18.
Carbonate cements are the most abundant authigenic mineral and impact on physical properties greatly in sandstone reservoir. In this paper, Pinghu Formation of Xihu Sag was taken as a target. Characteristics,distribution and formation of carbonate cements were investigated via optical microscopy, cathodoluminescence(CL), electron probe and in-situ carbon-oxygen isotope. The results showed that carbonate cements varied in types and shapes. Calcite/dolomite mainly present as poikilotopic cements, ...  相似文献   

19.
渐新世花港组是东海陆架盆地西湖凹陷发育的最主要储层,基于普通薄片、铸体薄片、扫描电镜和荧光显微观察,结合同位素地球化学对东海陆架盆地西湖凹陷花港组砂岩储层的成岩作用、成岩序列及成岩流体演化进行了研究。结果表明,花港组砂岩储层目前处于中成岩阶段B期,主要经历了机械压实、绿泥石粘土摸、酸性及碱性溶蚀作用,石英次生加大,碳酸盐胶结和自生高岭石胶结等成岩作用。研究区发育有三期碳酸盐胶结物,早期菱铁矿胶结物,中期铁方解石和晚期铁白云石。根据碳酸盐胶结物的碳氧同位素特征分析认为早期碳酸盐胶结物是由过饱和的碱性湖水沉淀造成的,而晚期碳酸盐胶结物的形成与有机酸密切相关。研究区存在两类溶蚀作用,酸性溶蚀作用和碱性溶蚀作用,早期的酸性溶蚀作用主要是有机酸对长石、岩屑及早期碳酸盐胶结物的溶蚀,晚期的碱性溶蚀作用主要是发生于碱性环境下流体对石英及硅质胶结物的溶蚀。研究区发育有两期油气充注,早期发生于晚中新世,早期发生于晚中新世,早于中期碳酸盐胶结,晚于长石溶蚀和石英胶结充注,充注量较大,第四纪以来研究区发生了第二次充注,第二次充注发生于铁白云石胶结之后,此时储层已非常致密。  相似文献   

20.
The mesogenetic dissolution is well developed in the middle Ordovician Yijianfang formation (O2yj) limestone, and the dissolution pores are very important for petroleum accumulation in the south slope area of the Tahe oilfield which lies in the north of the Tarim basin, northwestern China. Mottled, dotted or laminar dissolution can be observed in the O2yj limestone. Under microscope, the grains, lime matrix and all stages of calcite cements (including oil-inclusion-bearing blocky calcite cements) can all be found dissolved ubiquitously. The stylolites in the limestone were enlarged and rounded because of dissolution. Some dolomite rhombs, precipitated along stylolites in burial environment, were found dissolved as well. The dissolution of the blocky calcite cements and dolomite rhombs and the enlarging of stylolites demonstrate that the dissolution took place in the mesogenetic environment. Concentration of trace elements, including REEs, of the eroded part of the O2yj limestone is intermediate between that of the uneroded part and that of the underlying lower Ordovician limestone hydrocarbon source rocks. Both δ13CPDB and δ18OPDB values of the eroded part are less than those of the uneroded part, respectively. The geochemical characteristics indicate that the eroding fluids are hydrocarbon-bearing fluids coming from the underlying hydrocarbon source rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号