首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

2.
Uppermost Jurassic and Lower Cretaceous strata of the Silesian Nappe of the Outer Western Carpathians contain large amounts of shale, which can, under favourable conditions, become source rocks for hydrocarbons. This study analysed 45 samples from the area of Czech Republic by the means of palynofacies analysis, thermal alteration index (TAI) of palynomorphs and total organic carbon (TOC) content to determine the kerogen type, hydrocarbon source rock potential, and to interpret the depositional environment. Uppermost Jurassic Vendryně Formation and Lower Cretaceous Formations (Těšín Limestone, Hradiště and Lhoty) reveal variable amount of mostly gas prone type III kerogen. Aptian Veřovice Formation has higher organic matter content (over 3 wt.%) and oil-prone type II kerogen. Organic matter is mature to overmature and hydrocarbon potential predisposes it as a source of gas. Aptian black claystones of the Veřovice Fm. are correlatable with oceanic anoxic event 1 (OAE1).  相似文献   

3.
Ever since a breakthrough of marine shales in China, lacustrine shales have been attracting by the policy makers and scientists. Organic-rich shales of the Middle Jurassic strata are widely distributed in the Yuqia Coalfield of northern Qaidam Basin. In this paper, a total of 42 shale samples with a burial depth ranging from 475.5 m to 658.5 m were collected from the Shimengou Formation in the YQ-1 shale gas borehole of the study area, including 16 samples from the Lower Member and 26 samples from the Upper Member. Geochemistry, reservoir characteristics and hydrocarbon generation potential of the lacustrine shales in YQ-1 well were preliminarily investigated using the experiments of vitrinite reflectance measurement, maceral identification, mineralogical composition, carbon stable isotope, low-temperature nitrogen adsorption, methane isothermal adsorption and rock eval pyrolysis. The results show that the Shimengou shales have rich organic carbon (averaged 3.83%), which belong to a low thermal maturity stage with a mean vitrinite reflectance (Ro) of 0.49% and an average pyrolytic temperature of the generated maximum remaining hydrocarbon (Tmax) of 432.8 °C. Relative to marine shales, the lacustrine shales show low brittleness index (averaged 34.9) but high clay contents (averaged 55.1%), high total porosities (averaged 13.71%) and great Langmuir volumes (averaged 4.73 cm−3 g). Unlike the marine and marine-transitional shales, the quartz contents and brittleness index (BI) values of the lacustrine shales first decrease then increase with the rising TOC contents. The kerogens from the Upper Member shales are dominant by the oil-prone types, whereas the kerogens from the Lower Member shales by the gas-prone types. The sedimentary environment of the shales influences the TOC contents, thus has a close connection with the hydrocarbon potential, mineralogical composition, kerogen types and pore structure. Additionally, in terms of the hydrocarbon generation potential, the Upper Member shales are regarded as very good and excellent rocks whereas the Lower Member shales mainly as poor and fair rocks. In overall, the shales in the top of the Upper Member can be explored for shale oil due to the higher free hydrocarbon amount (S1), whereas the shales in the Lower Member and the Upper Member, with the depths greater than 1000 m, can be suggested to explore shale gas.  相似文献   

4.
As a result of a long-lasting and complex geological history, organic-matter-rich fine-grained rocks (black shales) with widely varying ages can be found on Ukrainian territory. Several of them are proven hydrocarbon source rocks and may hold a significant shale gas potential.Thick Silurian black shales accumulated along the western margin of the East European Craton in a foreland-type basin. By analogy with coeval organic-matter-rich rocks in Poland, high TOC contents and gas window maturity can be expected. However, to date information on organic richness is largely missing and maturity patterns remain to be refined.Visean black shales with TOC contents as high as 8% and a Type III-II kerogen accumulated along the axis of the Dniepr-Donets rift basin (DDB). They are the likely source for conventional oil and gas. Oil-prone Serpukhovian black shales accumulated in the shallow northwestern part of the DDB. Similar black shales probably may be present in the Lviv-Volyn Basin (western Ukraine).Middle Jurassic black shales up to 500 m thick occur beneath the Carpathian Foredeep. They are the likely source for some heavy oil deposits. TOC contents up to 12% (Type II) have been recorded, but additional investigations are needed to study the vertical and lateral variability of organic matter richness and maturity.Lower Cretaceous black shales with a Type III(-II) kerogen (TOC > 2%) are widespread at the base of the Carpathian flysch nappes, but Oligocene black shales (Menilite Fm.) rich in organic matter (4–8% TOC) and containing a Type II kerogen are the main source rock for oil in the Carpathians. Their thermal maturity increases from the external to the internal nappes.Oligocene black shales are also present in Crimea (Maykop Fm.). These rocks typically contain high TOC contents, but data from Ukraine are missing.  相似文献   

5.
Variability in the Lower Bowland shale microstructure is investigated here, for the first time, from the centimetre to the micrometre scale using optical and scanning electron microscopy (OM, SEM), X-Ray Diffraction (XRD) and Total Organic Carbon content (TOC) measurements. A significant range of microtextures, organic-matter particles and fracture styles was observed in rocks of the Lower Bowland shale, together with the underlying Pendleside Limestone and Worston Shale formations encountered the Preese Hall-1 Borehole, Lancashire, UK. Four micro-texture types were identified: unlaminated quartz-rich mudstone; interlaminated quartz- and pyrite-rich mudstone; laminated quartz and pyrite-rich mudstone; and weakly-interlaminated calcite-rich mudstone. Organic matter particles are classified into four types depending on their size, shape and location: multi-micrometre particles with and without macropores: micrometre-size particles in cement and between clay minerals; multi-micrometre layers; and organic matter in large pores. Fractures are categorized into carbonate-sealed fractures; bitumen-bearing fractures; resin-filled fractures; and empty fractures. We propose that during thermal maturation, horizontal bitumen-fractures were formed by overpressuring, stress relaxation, compaction and erosional offloading, whereas vertical bitumen-bearing, resin-filled and empty fractures may have been influenced by weak vertical joints generated during the previous period of veining. For the majority of samples, the high TOC (>2 wt%), low clay content (<20 wt%), high proportion of quartz (>50 wt%) and the presence of a multi-scale fracture network support the increasing interest in the Bowland Shale as a potentially exploitable oil and gas source. The microtextural observations made in this study highlight preliminary evidence of fluid passage or circulation in the Bowland Shale sequence during burial.  相似文献   

6.
The objectives of our study were to assess the thickness, lateral extent, organic richness and maturity of the potential source rocks in Hungary and to estimate the volumes of hydrocarbons generated, in order that potential shale gas and shale oil plays could be identified and characterised.The Upper Triassic Kössen Marl in south-west Hungary could represent the best potential shale gas/shale oil play, due to its high organic richness, high maturity and the presence of fracture barriers. The area of gas- and oil-generative maturity is around 720 km2 with the unexpelled petroleum estimated to be up to 9 billion barrel oil-equivalent.The Lower Jurassic sediments of the Mecsek Mountains and under the Great Plain contain fair quality gas-prone source rocks, with low shale gas potential, except for a thin Toarcian shale unit which is richer in organic matter. The latter could form a potential shale gas play under the Great Hungarian Plain, if it is thicker locally.The Lower Oligocene Tard Clay in north-east Hungary could represent the second best potential shale oil play, due to its organic richness, favourable maturity and large areal extent (4500 km2) with around 7 billion barrel oil-equivalent estimated in-place volume of petroleum.Middle Miocene marine formations could represent locally-developed shale gas plays; they have fair amounts of organic matter and a mixture of type II/III kerogen, but their vertical and lateral variability is high.The Upper Miocene lacustrine Endrőd Marl contains less organic matter and the kerogen is mainly type III, which is not favourable for shale gas generation. The high carbonate and clay content, plus the lack of upper and lower fracture barriers would represent additional production challenges.  相似文献   

7.
Potential source rocks on the Laminaria High, a region of the northern Bonaparte Basin on the North West Shelf of Australia, occur within the Middle Jurassic to Lower Cretaceous early to post-rift sequences. Twenty-two representative immature source rock samples from the Jurassic to Lower Cretaceous (Plover, Laminaria, Frigate, Flamingo and Echuca Shoals) sequences were analysed to define the hydrocarbon products that analogous mature source rocks could have generated during thermal maturation and filled the petroleum reservoirs in the Laminaria High region. Rock-Eval pyrolysis data indicate that all the source rocks contain type II–III organic matter and vary in organic richness and quality. Open system pyrolysis-gas chromatography on extracted rock samples show a dominance of aliphatic components in the pyrolysates. The Plover source rocks are the exception which exhibit high phenolic contents due to their predominant land-plant contribution. Most of the kerogens have the potential to generate Paraffinic–Naphthenic–Aromatic oils with low wax contents. Bulk kinetic analyses reveal a relatively broad distribution of activation energies that are directly related to the heterogeneity in the kerogens. These kinetic parameters suggest different degrees of thermal stability, with the predicted commencement of petroleum generation under geological heating conditions covering a relatively broad temperature range from 95 to 135 °C for the Upper Jurassic−Lower Cretaceous source rocks. Both shales and coals of the Middle Jurassic Plover Formation have the potential to generate oil at relatively higher temperatures (140–145 °C) than those measured for crude oils in previous studies. Hence, the Frigate and the Flamingo formations are the main potential sources of oils reservoired in the Laminaria and Corallina fields. Apart from being a reservoir, the Laminaria Formation also contains organic-rich layers, with the potential to generate oil. For the majority of samples analysed, the compositional kinetic model predictions indicate that 80% of the hydrocarbons were generated as oil and 20% as gas. The exception is the Lower Cretaceous Echuca Shoals Formation which shows the potential to generate a greater proportion (40%) of gas despite its marine source affinity, due to inertinite dominating the maceral assemblage.  相似文献   

8.
Thirty-six Silurian core and cuttings samples and 10 crude oil samples from Ordovician reservoirs in the NC115 Concession, Murzuq Basin, southwest Libya were studied by organic geochemical methods to determine source rock organic facies, conditions of deposition, thermal maturity and genetic relationships. The Lower Silurian Hot Shale at the base of the Tanezzuft Formation is a high-quality oil/gas-prone source rock that is currently within the early oil maturity window. The overall average TOC content of the Hot Shale is 7.2 wt% with a maximum recorded value of 20.9 wt%. By contrast, the overlying deposits of the Tanezzuft Formation have an average TOC of 0.6 wt% and a maximum value of 1.1 wt%. The organic matter in the Hot Shale consists predominantly of mixed algal and terrigenous Type-II/III kerogen, whereas the rest of the formation is dominated by terrigenous Type-III organic matter with some Type II/III kerogen. Oils from the A-, B- and H-oil fields in the NC115 Concession were almost certainly derived from marine shale source rocks that contained mixed algal and terrigenous organic input reflecting deposition under suboxic to anoxic conditions. The oils are light and sweet, and despite being similar, were almost certainly derived from different facies and maturation levels within mature source rocks. The B-oils were generated from slightly less mature source rocks than the others. Based on hierarchical cluster analysis (HCA), principal component analysis (PCA), selected source-related biomarkers and stable carbon isotope ratios, the NC115 oils can be divided into two genetic families: Family-I oils from Ordovician Mamuniyat reservoirs were probably derived from older Palaeozoic source rocks, whereas Family-II oils from Ordovician Mamuniyat–Hawaz reservoirs were probably charged from a younger Palaeozoic source of relatively high maturity. A third family appears to be a mixture of the two, but is most similar to Family-II oils. These oil families were derived from one proven mature source rock, the Early Silurian, Rhuddanian Hot Shale. There is a good correlation between the Family-II and -III oils and the Hot Shale based on carbon isotope compositions. Saturated and aromatic maturity parameters indicate that these oils were generated from a source rock of considerably higher maturity than the examined rock samples. The results imply that the oils originated from more mature source rocks outside the NC115 Concession and migrated to their current positions after generation.  相似文献   

9.
华南陆缘出露的上三叠统-白垩系,累计厚度超过10 000m,露头调查未见油苗,烃源岩主要为泥岩、碳质泥岩和煤线,有机质类型以Ⅱ-Ⅲ型为主。上三叠统小水组,发育较深水的海相、Ⅱ型良好烃源岩,TOC为1.17%~5.43%;下侏罗统桥源组发育海陆过渡环境的Ⅲ型良好烃源岩,TOC为1.36%~10.37%;下侏罗统其他层系(金鸡组、银瓶山组、上龙水组、长埔组、吉水门组)发育浅海-半深海相的中等-好的烃源岩,TOC为0.5%~1.76%。烃源岩均已处于成熟-过成熟阶段。小水组、蓝塘群烃源岩品质良好,厚度巨大,在南海北部海域开展中生界烃源岩研究时,值得重点关注是否有与之相当的烃源岩层系发育。  相似文献   

10.
Cretaceous sedimentary rocks of the Mukalla, Harshiyat and Qishn formations from three wells in the Jiza sub-basin were studied to describe source rock characteristics, providing information on organic matter type, paleoenvironment of deposition and hydrocarbon generation potential. This study is based on organic geochemical and petrographic analyses performed on cuttings samples. The results were then incorporated into basin models in order to understand the burial and thermal histories and timing of hydrocarbon generation and expulsion.The bulk geochemical results show that the Cretaceous rocks are highly variable with respect to their genetic petroleum generation potential. The total organic carbon (TOC) contents and petroleum potential yield (S1 + S2) of the Cretaceous source rocks range from 0.43 to 6.11% and 0.58–31.14 mg HC/g rock, respectively indicating non-source to very good source rock potential. Hydrogen index values for the Early to Late Cretaceous Harshiyat and Qishn formations vary between 77 and 695 mg HC/g TOC, consistent with Type I/II, II-III and III kerogens, indicating oil and gas generation potential. In contrast, the Late Cretaceous Mukalla Formation is dominated by Type III kerogen (HI < 200 mg HC/g TOC), and is thus considered to be gas-prone. The analysed Cretaceous source rock samples have vitrinite reflectance values in the range of 0.37–0.95 Ro% (immature to peak-maturity for oil generation).A variety of biomarkers including n-alkanes, regular isoprenoids, terpanes and steranes suggest that the Cretaceous source rocks were deposited in marine to deltaic environments. The biomarkers also indicate that the Cretaceous source rocks contain a mixture of aquatic organic matter (planktonic/bacterial) and terrigenous organic matter, with increasing terrigenous influence in the Late Cretaceous (Mukalla Formation).The burial and thermal history models indicate that the Mukalla and Harshiyat formations are immature to early mature. The models also indicate that the onset of oil-generation in the Qishn source rock began during the Late Cretaceous at 83 Ma and peak-oil generation was reached during the Late Cretaceous to Miocene (65–21 Ma). The modeled hydrocarbon expulsion evolution suggests that the timing of oil expulsion from the Qishn source rock began during the Miocene (>21 Ma) and persisted to present-day. Therefore, the Qishn Formation can act as an effective oil-source but only limited quantities of oil can be expected to have been generated and expelled in the Jiza sub-basin.  相似文献   

11.
The non-marine Fushun Basin in NE China is a fault-controlled basin filled with Eocene sediments. It hosts the largest opencast coal and oil shale mine in Asia. A single thick oil shale layer overlying sub-bituminous coal occurs within the Middle Eocene Jijuntun Formation. Based on mineralogy, inorganic and organic geochemistry, organic petrography, stable isotope geochemistry, and vitrinite reflectance measurements, the depositional environment and the oil shale potential of the oil shale-bearing succession were investigated. The Jijuntun Formation is subdivided into a lower and an upper unit characterized by a low and high quality oil shale, respectively. The thick oil shale layer of the Jijuntun Formation developed under long-lasting stable conditions in a deep freshwater lake, after drowning of a swamp. The organic matter in the lower unit is characterized by landplant-derived macerals. The sediments containing a type II kerogen (HI: ∼400 mgHC/gTOC) were deposited during warm and humid conditions. Lacustrine organisms predominant in the upper unit are forming kerogen type I (HI: ∼700 mgHC/gTOC). High bioproductivity and excellent preservation conditions resulted in high TOC contents up to 23.6 wt.% in the upper unit. The organic matter preservation was controlled by photic zone anoxia originating in a temperature stratified water column in the deep lake, without significant changes in bottom water salinity. Mid-Eocene cooling during deposition of the upper unit of the Jijuntun Formation is reflected by clay mineral composition. A hot and arid climate favoring brackish conditions in a shallow lake prevailed during accumulation of the overlying carbonate-rich Xilutian Formation. Individual geochemical parameters in the Fushun Basin have to be used with caution, e.g. the maturity proxy Tmax is affected by kerogen type, the redox proxy Pr/Ph ratio is probably biased by different sources of isoprenoids. This demonstrates the importance of multi-proxy studies.  相似文献   

12.
The exploration and production of unconventional resources has increased significantly over the past few years around the globe to fulfill growing energy demands. Hydrocarbon potential of these unconventional petroleum systems depends on the presence of significant organic matter; their thermal maturity and the quality of present hydrocarbons i.e. gas or oil shale. In this work, we present a workflow for estimating Total Organic Content (TOC) from seismic reflection data. To achieve the objective of this study, we have chosen a classic potential candidate for exploration of unconventional reserves, the shale of the Sembar Formation, Lower Indus Basin, Pakistan. Our method includes the estimation of TOC from the well data using the Passey’s ΔlogR and Schwarzkofp’s methods. From seismic data, maps of Relative Acoustic Impedance (RAI) are extracted at maximum and minimum TOC zones within the Sembar Formation. A geostatistical trend with good correlation coefficient (R2) for cross-plots between TOC and RAI at well locations is used for estimation of seismic based TOC at the reservoir scale. Our results suggest a good calibration of TOC values from seismic at well locations. The estimated TOC values range from 1 to 4% showing that the shale of the Sembar Formation lies in the range of good to excellent unconventional oil/gas play within the context of TOC. This methodology of source rock evaluation provides a spatial distribution of TOC at the reservoir scale as compared to the conventional distribution generated from samples collected over sparse wells. The approach presented in this work has wider applications for source rock evaluation in other similar petroliferous basins worldwide.  相似文献   

13.
Source rock studies are one of the key issues of petroleum exploration activities. In the supercontinent of Gondwana, ice ages related to the Upper Ordovician (Hirnantian) and rising sea levels caused by glacial melting at the end of the Ordovician and Early Silurian (Llandoverian) created excellent source rocks along the margin of Gondwana. Investigations conducted in the Arabian Peninsula have been indicated indicating that the lower Qalibah Formation (the so-called Qusaiba Member or Hot Shale) is a good source rock for the Paleozoic petroleum system in this area. Likewise, the Sarchahan Formation was recently introduced as a source rock in the Zagros Basin of Iran, which is probably equivalent to the Qalibah Formation in the Arabian Peninsula. In this study, samples were prepared from surface and subsurface Paleozoic rock units in Iran's Zagros Basin. The emphasis of the paper was on the Sarchahan Formation in Kuh-e Faraghan, ranging in age from the Late Ordovician (Hirnantian) to Lower Silurian (Llandoverian) to determine whether the high richness of organic matter in the Sarchahan Formation is related to the Late Ordovician or Lower Silurian. The basal part of the Sarchahan Formation belongs to the Late Ordovician (Hirnantian) because of the presence of the persculptus graptolite biozone, while the remainder belongs to the Lower Silurian. The Ordovician and early Llandoverian parts of the Sarchahan Formation contain type II and III kerogen with TOC ranging from 2.94 to 7.19, but the rest of the Sarchahan Formation (late Llandoverian) has TOC ranging from 0.1 to 0.58. Therefore, the Hot Shale in Iran falls within the Hirnantian and early Llandoverian (Rhuddanian), and not the latest Llandoverian (Aeronian and Telychian). Utilizing organic petrography, kerogen type was found II/III. The carbon stable isotope studies revealed that the source rock of hydrocarbons in Dalan and Kangan reservoirs has been the Sarchahan Formation. Based on analytical data, the kerogenous shales in the lower part of the Sarchahan Formation are at end of gas window, and the gamma ray amount is approximately 180 API. This research indicates the differences between the source rocks in the southern and northern Persian Gulf and suggesting, the Hot Shale should be considered in different views and used in modeling studies of sedimentary basins for future exploration targets.  相似文献   

14.
Upper Jurassic organic matter-rich, marine shales of the Mandal Formation have charged major petroleum accumulations in the North Sea Central Graben including the giant Ekofisk field which straddles the graben axis. Recent exploration of marginal basin positions such as the Mandal High area or the Søgne Basin has been less successful, raising the question as to whether charging is an issue, possibly related to high thermal stability of the source organic matter or delayed expulsion from source to carrier.The Mandal Formation is in part a very prolific source rock containing mainly Type II organic matter with <12 wt.-% TOC and HI < 645 mg HC/g TOC but Type III-influenced organofacies are also present. The formation is therefore to varying degrees heterogeneous. Here we show, using geochemical mass balance modelling, that the petroleum expulsion efficiency of the Mandal Formation is relatively low as compared to the Upper Jurassic Draupne Formation, the major source rock in the Viking Graben system. Using maturity series of different initial source quality from structurally distinct regions and encompassing depositional environments from proximal to distal facies, we have examined the relationship between free hydrocarbon retention and organic matter structure. The aromaticity of the original and matured petroleum precursors in the Mandal source rock plays a major role in its gas retention capacity as cross-linked monoaromatic rings act on the outer surface of kerogen as sorptive sites. However, oil retention is a function of both kerogen and involatile bitumen compositions. Slight variations in total petroleum retention capacities within the same kerogen yields suggest that texture of organic matter (e.g. organic porosity) could play a role as well.  相似文献   

15.
Shales of the Silurian Dadaş Formation exposed in the southeast Anatolia were investigated by organic geochemical methods. The TOC contents range from 0.24 to 1.48 wt% for the Hazro samples and 0.19 to 3.58 wt% for the Korudağ samples. Tmax values between 438 and 440 °C in the Hazro samples indicate thermal maturity; Tmax values ranging from 456 to 541 °C in the Korudağ samples indicate late to over-maturity. Based on the calculated vitrinite reflectance and measured vitrinite equivalent reflectance values, the Korudağ samples have a maximum of 1.91%R(g-v), in the gas generation window, while a maximum value of 0.79%R(amor-v) of one sample from the Hazro section is in the oil generation window. Illite crystallinity (IC) values of all samples are consistent with maturity results.Pr/Ph ratios ranging from 1.32 to 2.28 and C29/C30 hopane ratios > 1.0 indicate an anoxic to sub-oxic marine-carbonate depositional environment.The Hazro shales do not have any shale oil or shale gas potential because of their low oil saturation index values and early to moderate thermal maturation. At first glance, the Korudağ shales can be considered a shale gas formation because of their organic richness, thickness and thermal over-maturity. However, the low silica content and brittle index values of these shales are preventing their suitability as shale gas resource systems.  相似文献   

16.
An evaluation of the petroleum generating potential of onshore Eocene-Miocene sequences of Western Sabah, Malaysia was performed based on organic petrological and geochemical methods. The sequences analysed are the Belait, Meligan, Temburong and West Crocker formations of western Sabah. The Belait Formation which is Stage IV equivalent in the offshore represents one of the major source rock/reservoirs of the petroleum-bearing Sabah Basin. The Eocene-Early Miocene West Crocker and Temburong formations are deepwater turbidites whilst the Miocene Meligan and Belait formations are shallow marine fluvio-deltaic deposits. The vitrinite reflectance and pyrolysis Tmax values show that the Belait samples are generally immature for hydrocarbon generation, whereas the Meligan, Temburong and West Crocker samples are in the mature to late maturity stage of hydrocarbon generation. The overall bulk source rock properties of the Belait and Meligan show fair to good petroleum source rock potential with TOC more than 1 wt %, hydrocarbon yield in the range of 400–1300 ppm and moderately high HI for many of the samples. Most of the samples representing the Temburong and West Crocker formations have TOC less than 1 wt% and have no to fair hydrocarbon generating potential. Interestingly, the samples collected in the West Crocker Formation characterized by slump deposits (MTD) have TOC>2 and possess good to excellent hydrocarbon generating potential. The organic matter present in all of the studied formations is mainly of terrigenous origin based on the abundance of woody plant materials observed under the microscope. Consequently, the analysed sequences are predominantly gas prone, dominated by Type III and Type III-IV kerogen except for minor occurrence of mixed oil-gas prone Type II-III kerogen in the Belait Formation and in the slump mass transport deposits (MTD) of the West Crocker Formation.  相似文献   

17.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

18.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

19.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation.  相似文献   

20.
The Upper Triassic — Lower Jurassic Kap Stewart Formation (Jameson Land, East Greenland) has been studied by a combination of sedimentological and organic geochemical methods (LECO/Rock Eval, sulphur, gas chromatography) in order to assess the hydrocarbon source potential of the abundant and extensive lacustrine shale intervals present in the formation.The organic matter in the shales is a mixture of algal and higher plant remains (type I and III kerogen). An organic assemblage dominated by algal material, having a rich oil potential, occurs in an interval approximately 10–15 m thick in the uppermost part of the formation. This interval has an organic carbon content up to 10% and Hydrogen Index values up to 700. The interval is consistently traceable along the exposed margins and the central part of the basin. The deposition of the uppermost shale interval coincided with the largest expansion of the lake, during a period with a stratified water column and anoxic bottom-water conditions.Locally the rocks exposed are thermally postmature due to the thermal influence of dolerite sills which intruded the Kap Stewart Formation in Tertiary time. However, the organic-rich shale interval is beyond the influence of the sills and indicates a maturity prior to or in the early stages of oil generation.Calculations of the generative potential of the lacustrine source rocks suggest that significant amounts of petroleum may have been generated in those sediments which have undergone sufficient burial in the southern and central part of the basin. Here, the contemporaneously deposited delta front and barrier island sandstones can thus be considered as potential targets for future hydrocarbon exploration. This type of play may also be of importance in other North Atlantic basins with a similar basin history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号