首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is to provide both quantitative and qualitative visual analyses of the nanometer-scale pore systems of immature and early shales, as well as to discuss the biogenic shale gas accumulation potential of the Upper Cretaceous section of the Songliao Basin. To achieve these goals, mineralogical compositions were determined using transmitted and reflected light petrography, X-ray diffractometry and scanning electron microscopy (SEM), while the nanostructure morphology and pore size distributions (PSDs) were quantified using field emission scanning electron microscopy (FE-SEM) and low-pressure nitrogen gas adsorption (LP-N2GA). The results of these analyses indicate that nanometer-scale pores are well developed in the immature and low-maturity shale, and that these shales contain many types of reservoir pores. The mudstone layer of the Qingshankou Formation (K2qn) contains a high permeability characteristic and good rock fracturing conditions, while it is also thick (>9 m in thickness) and rich in fine organic matter. Overall, analysis of the entire formation using source rock and reservoir evaluations indicate that the first member of the Qingshankou Formation (K2qn1) has a greater shale gas accumulation potential than the second and third members of the Qingshankou Formation (K2qn2-3).  相似文献   

2.
The geochemical and petrographic characteristics of saline lacustrine shales from the Qianjiang Formation, Jianghan Basin were investigated by organic geochemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and low pressure nitrogen adsorption analysis. The results indicate that: the saline lacustrine shales of Eq3 member with high oil content are characterized by type I and type II oil-prone kerogen, variable TOC contents (1.0–10.0 wt%) and an early-maturity stage (Ro ranges between 0.41 and 0.76%). The mineral compositions of Eq3 saline shale show strong heterogeneity: brittle intervals with high contents of quartz and carbonate are frequently alternated with ductile intervals with high glauberite and clay contents. This combination might be beneficial for oil accumulation, but may cause significant challenges for the hydraulic stimulation strategy and long-term production of shale oil. The interparticle pores and intraparticle pores dominate the pore system of Eq3 shale, and organic matter hosted pores are absent. Widely distributed fractures, especially tectonic fractures, might play a key role in hydrocarbon migration and accumulation. The pore network is contributed to by both large size inorganic pores and abundant micro-factures, leading to a relatively high porosity (2.8–30.6%) and permeability (0.045–6.27 md) within the saline shale reservoir, which could enhance the flow ability and storage capacity of oil. The oil content (S1 × 100/TOC, mg HC/g TOC and S1, mg HC/g rock) and brittleness data demonstrate that the Eq33x section has both great potential for being a producible oil resource and hydraulic fracturing. Considering the hydrocarbon generation efficiency and properties of oil, the mature shale of Eq3 in the subsidence center of the Qianjiang Depression would be the most favorable zone for shale oil exploitation.  相似文献   

3.
To study the sedimentary environment of the Lower Cambrian organic-rich shales and isotopic geochemical characteristics of the residual shale gas, 20 black shale samples from the Niutitang Formation were collected from the Youyang section, located in southeastern Chongqing, China. A combination of geochemical, mineralogical, and trace element studies has been performed on the shale samples from the Lower Cambrian Niutitang Formation, and the results were used to determine the paleoceanic sedimentary environment of this organic-rich shale. The relationships between total organic carbon (TOC) and total sulfur (TS) content, carbon isotope value (δ13Corg), trace element enrichment, and mineral composition suggest that the high-TOC Niutitang shale was deposited in an anoxic environment and that the organic matter was well preserved after burial. Stable carbon isotopes and biomarkers both indicate that the organic matter in the Niutitang black shales was mainly derived from both lower aquatic organisms and algaes and belong to type I kerogen. The oil-prone Niutitang black shales have limited residual hydrocarbons, with low values of S2, IH, and bitumen A. The carbon isotopic distribution of the residual gas indicate that the shale gas stored in the Niutitang black shale was mostly generated from the cracking of residual bitumen and wet gas during a stage of significantly high maturity. One of the more significant observations in this work involves the carbon isotope compositions of the residual gas (C1, C2, and C3) released by rock crushing. A conventional δ13C1–δ13C2 trend was observed, and most δ13C2 values of the residual gases are heavier than those of the organic matter (OM) in the corresponding samples, indicating the splitting of ethane bonds and the release of smaller molecules, leading to 13C enrichment in the residual ethane.  相似文献   

4.
Ever since a breakthrough of marine shales in China, lacustrine shales have been attracting by the policy makers and scientists. Organic-rich shales of the Middle Jurassic strata are widely distributed in the Yuqia Coalfield of northern Qaidam Basin. In this paper, a total of 42 shale samples with a burial depth ranging from 475.5 m to 658.5 m were collected from the Shimengou Formation in the YQ-1 shale gas borehole of the study area, including 16 samples from the Lower Member and 26 samples from the Upper Member. Geochemistry, reservoir characteristics and hydrocarbon generation potential of the lacustrine shales in YQ-1 well were preliminarily investigated using the experiments of vitrinite reflectance measurement, maceral identification, mineralogical composition, carbon stable isotope, low-temperature nitrogen adsorption, methane isothermal adsorption and rock eval pyrolysis. The results show that the Shimengou shales have rich organic carbon (averaged 3.83%), which belong to a low thermal maturity stage with a mean vitrinite reflectance (Ro) of 0.49% and an average pyrolytic temperature of the generated maximum remaining hydrocarbon (Tmax) of 432.8 °C. Relative to marine shales, the lacustrine shales show low brittleness index (averaged 34.9) but high clay contents (averaged 55.1%), high total porosities (averaged 13.71%) and great Langmuir volumes (averaged 4.73 cm−3 g). Unlike the marine and marine-transitional shales, the quartz contents and brittleness index (BI) values of the lacustrine shales first decrease then increase with the rising TOC contents. The kerogens from the Upper Member shales are dominant by the oil-prone types, whereas the kerogens from the Lower Member shales by the gas-prone types. The sedimentary environment of the shales influences the TOC contents, thus has a close connection with the hydrocarbon potential, mineralogical composition, kerogen types and pore structure. Additionally, in terms of the hydrocarbon generation potential, the Upper Member shales are regarded as very good and excellent rocks whereas the Lower Member shales mainly as poor and fair rocks. In overall, the shales in the top of the Upper Member can be explored for shale oil due to the higher free hydrocarbon amount (S1), whereas the shales in the Lower Member and the Upper Member, with the depths greater than 1000 m, can be suggested to explore shale gas.  相似文献   

5.
The non-marine Fushun Basin in NE China is a fault-controlled basin filled with Eocene sediments. It hosts the largest opencast coal and oil shale mine in Asia. A single thick oil shale layer overlying sub-bituminous coal occurs within the Middle Eocene Jijuntun Formation. Based on mineralogy, inorganic and organic geochemistry, organic petrography, stable isotope geochemistry, and vitrinite reflectance measurements, the depositional environment and the oil shale potential of the oil shale-bearing succession were investigated. The Jijuntun Formation is subdivided into a lower and an upper unit characterized by a low and high quality oil shale, respectively. The thick oil shale layer of the Jijuntun Formation developed under long-lasting stable conditions in a deep freshwater lake, after drowning of a swamp. The organic matter in the lower unit is characterized by landplant-derived macerals. The sediments containing a type II kerogen (HI: ∼400 mgHC/gTOC) were deposited during warm and humid conditions. Lacustrine organisms predominant in the upper unit are forming kerogen type I (HI: ∼700 mgHC/gTOC). High bioproductivity and excellent preservation conditions resulted in high TOC contents up to 23.6 wt.% in the upper unit. The organic matter preservation was controlled by photic zone anoxia originating in a temperature stratified water column in the deep lake, without significant changes in bottom water salinity. Mid-Eocene cooling during deposition of the upper unit of the Jijuntun Formation is reflected by clay mineral composition. A hot and arid climate favoring brackish conditions in a shallow lake prevailed during accumulation of the overlying carbonate-rich Xilutian Formation. Individual geochemical parameters in the Fushun Basin have to be used with caution, e.g. the maturity proxy Tmax is affected by kerogen type, the redox proxy Pr/Ph ratio is probably biased by different sources of isoprenoids. This demonstrates the importance of multi-proxy studies.  相似文献   

6.
As a result of a long-lasting and complex geological history, organic-matter-rich fine-grained rocks (black shales) with widely varying ages can be found on Ukrainian territory. Several of them are proven hydrocarbon source rocks and may hold a significant shale gas potential.Thick Silurian black shales accumulated along the western margin of the East European Craton in a foreland-type basin. By analogy with coeval organic-matter-rich rocks in Poland, high TOC contents and gas window maturity can be expected. However, to date information on organic richness is largely missing and maturity patterns remain to be refined.Visean black shales with TOC contents as high as 8% and a Type III-II kerogen accumulated along the axis of the Dniepr-Donets rift basin (DDB). They are the likely source for conventional oil and gas. Oil-prone Serpukhovian black shales accumulated in the shallow northwestern part of the DDB. Similar black shales probably may be present in the Lviv-Volyn Basin (western Ukraine).Middle Jurassic black shales up to 500 m thick occur beneath the Carpathian Foredeep. They are the likely source for some heavy oil deposits. TOC contents up to 12% (Type II) have been recorded, but additional investigations are needed to study the vertical and lateral variability of organic matter richness and maturity.Lower Cretaceous black shales with a Type III(-II) kerogen (TOC > 2%) are widespread at the base of the Carpathian flysch nappes, but Oligocene black shales (Menilite Fm.) rich in organic matter (4–8% TOC) and containing a Type II kerogen are the main source rock for oil in the Carpathians. Their thermal maturity increases from the external to the internal nappes.Oligocene black shales are also present in Crimea (Maykop Fm.). These rocks typically contain high TOC contents, but data from Ukraine are missing.  相似文献   

7.
The pore size classification (micropore <2 nm, mesopore 2–50 nm and macropore >50 nm) of IUPAC (1972) has been commonly used in chemical products and shale gas reservoirs; however, it may be insufficient for shale oil reservoirs. To establish a suitable pore size classification for shale oil reservoirs, the open pore systems of 142 Chinese shales (from Jianghan basin) were studied using mercury intrusion capillary pressure analyses. A quantitative evaluation method for I-micropores (0–25 nm in diameter), II-micropores (25–100 nm), mesopores (100–1000 nm) and macropores (>1000 nm) within shales was established from mercury intrusion curves. This method was verified using fractal geometry theory and argon-ion milling scanning electron microscopy images. Based on the combination of pore size distribution with permeability and average pore radius, six types (I-VI) shale open pore systems were analyzed. Moreover, six types open pore systems were graded as good, medium and poor reservoirs. The controlling factors of pore systems were also investigated according to shale compositions and scanning electron microscopy images. The results show that good reservoirs are composed of shales with type I, II and III pore systems characterized by dominant mesopores (mean 68.12 vol %), a few macropores (mean 7.20 vol %), large porosity (mean 16.83%), an average permeability of 0.823 mD and an average pore radius (ra) of 88 nm. Type IV pore system shales are medium reservoirs, which have a low oil reservoir potential due to the developed II-micropores (mean 57.67 vol %) and a few of mesopores (mean 20.19 vol %). Poor reservoirs (composed of type V and VI pore systems) are inadequate reservoirs for shale oil due to the high percentage of I-micropores (mean 69.16 vol %), which is unfavorable for the flow of oil in shale. Pore size is controlled by shale compositions (including minerals and organic matter), and arrangement and morphology of mineral particles, resulting in the developments of shale pore systems. High content of siliceous mineral and dolomite with regular morphology are advantage for the development of macro- and mesopores, while high content of clay minerals results in a high content of micropores.  相似文献   

8.
Shales of the Silurian Dadaş Formation exposed in the southeast Anatolia were investigated by organic geochemical methods. The TOC contents range from 0.24 to 1.48 wt% for the Hazro samples and 0.19 to 3.58 wt% for the Korudağ samples. Tmax values between 438 and 440 °C in the Hazro samples indicate thermal maturity; Tmax values ranging from 456 to 541 °C in the Korudağ samples indicate late to over-maturity. Based on the calculated vitrinite reflectance and measured vitrinite equivalent reflectance values, the Korudağ samples have a maximum of 1.91%R(g-v), in the gas generation window, while a maximum value of 0.79%R(amor-v) of one sample from the Hazro section is in the oil generation window. Illite crystallinity (IC) values of all samples are consistent with maturity results.Pr/Ph ratios ranging from 1.32 to 2.28 and C29/C30 hopane ratios > 1.0 indicate an anoxic to sub-oxic marine-carbonate depositional environment.The Hazro shales do not have any shale oil or shale gas potential because of their low oil saturation index values and early to moderate thermal maturation. At first glance, the Korudağ shales can be considered a shale gas formation because of their organic richness, thickness and thermal over-maturity. However, the low silica content and brittle index values of these shales are preventing their suitability as shale gas resource systems.  相似文献   

9.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

10.
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V + Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.  相似文献   

11.
The discovery of the giant Daqing oil field in the Songliao Basin led to the realisation of the significant petroleum potential of non-marine basins. In order to reconstruct the basin evolution and oil formation, an integrated organic geochemical-basin modelling study along a regional transect across the Songliao Basin was conducted. It provided a regional heat flow evolution model, and revealed post-orogenic or late syn-orogenic maturation in the Central Depression and pre-orogenic maturation in the Southeast Uplift Zone. Kinetic parameters of petroleum generation for the lacustrine source formations are the basis for the simulation of oil generation and migration in the Songliao Basin. Using the principle activation energy peaking at 54 kcal/mol and a pre-exponential factor of about 4.2·1027 Ma−1, the simulation obtained a relatively good match with the measured transformation ratios. The Qingshankou Formation in the West and East Central Depressions constituted the major source in the basin. Major oil generation, migration and accumulation occurred during the Early Tertiary. In the West Central Depression, the generated oils migrated upwards into the Yaojia Formation followed by the updip migration into the Daqing Anticline and towards the local structural high along the West Slope. In contrast, the oil migration in the East Central Depression was dominated by the downward movement from the lower member of the Qingshankou Formation followed by the updip migration towards the Caoyang Anticline. The simulated oil accumulations are in good agreement with discovered oil fields, implying a potential application of the model for prediction and evaluation of new exploration targets in the basin.  相似文献   

12.
Shales from the Lower Silurian Longmaxi Formation in the Sichuan Basin are among the most important shale gas reservoirs in China, and have been investigated because of their great shale gas potential. To understand the pore structure and fractal characteristics of the shales, a series of experiments was conducted on core samples from the Lower Silurian Longmaxi Formation in the Sichuan Basin of China, including X-ray diffraction (XRD), total organic carbon (TOC) content and vitrinite reflectance (Ro) analysis, field emission-environmental scanning electron microscope (FE-ESEM) observation, and low-pressure N2 adsorption-desorption experiments. Frenkel-Halsey-Hill (FHH) method was applied to calculate fractal dimensions. In addition, the pore genesis, the relationships between composition and thermal maturity, the pore structure parameters, and the fractal dimensions are discussed. FE-ESEM observation results show that the Longmaxi Formation shales are dominated by organic-matter (OM) pores along with interparticle (interP) pores, intraparticle (intraP) pores and fracture pores. This study identified the fractal dimensions at relative pressures of 0–0.45 and 0.45–1 as D1 and D2 respectively. D1 ranged from 2.60 to 2.71 and D2 ranged from 2.71 to 2.82. D1 was typically smaller than D2, indicating that the smaller pores in shales were more homogeneous than the larger ones. The formation of these OM pores is owing to kerogen deformation during the thermal maturation, which results in a large number of nanopores. The pore structure of the Longmaxi Formation shales is primarily controlled by TOC content and thermal maturity. TOC content is a controlling factor on the fractal dimensions as it exhibited positive correlations with D1 and D2. Fractal dimensions are useful for the characterization of the pore structures complexity of the Longmaxi Formation shales because D1 and D2 correlate well with pore structure parameters as they both increase with the increase of surface area and the decrease of average pore diameter.  相似文献   

13.
This study investigates the source rock characteristics of Permian shales from the Jharia sub-basin of Damodar Valley in Eastern India. Borehole shales from the Raniganj, Barren Measure and Barakar Formations were subjected to bulk and quantitative pyrolysis, carbon isotope measurements, mineral identification and organic petrography. The results obtained were used to predict the abundance, source and maturity of kerogen, along with kinetic parameters for its thermal breakdown into simpler hydrocarbons.The shales are characterized by a high TOC (>3.4%), mature to post-mature, heterogeneous Type II–III kerogen. Raniganj and Barren Measure shales are in mature, late oil generation stage (Rr%Raniganj = 0.99–1.22; Rr%Barren Measure = 1.1–1.41). Vitrinite is the dominant maceral in these shales. Barakar shows a post-mature kerogen in gas generation stage (Rr%Barakar = 1.11–2.0) and consist mainly of inertinite and vitrinite. The δ13Corg value of kerogen concentrate from Barren Measure shale indicates a lacustrine/marine origin (−24.6–−30.84‰ vs. VPDB) and that of Raniganj and Barakar (−22.72–−25.03‰ vs. VPDB) show the organic provenance to be continental. The δ13C ratio of thermo-labile hydrocarbons (C1–C3) in Barren Measure suggests a thermogenic source.Discrete bulk kinetic parameters indicate that Raniganj has lower activation energies (ΔE = 42–62 kcal/mol) compared to Barren Measure and Barakar (ΔE = 44–68 kcal/mol). Temperature for onset (10%), middle (50%) and end (90%) of kerogen transformation is least for Raniganj, followed by Barren Measure and Barakar. Mineral content is dominated by quartz (42–63%), siderite (9–15%) and clay (14–29%). Permian shales, in particular the Barren Measure, as inferred from the results of our study, demonstrate excellent properties of a potential shale gas system.  相似文献   

14.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

15.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

16.
Two sets of Lower Paleozoic organic-rich shales develop well in the Weiyuan area of the Sichuan Basin: the Lower Cambrian Jiulaodong shale and the Lower Silurian Longmaxi shale. The Weiyuan area underwent a strong subsidence during the Triassic to Early Cretaceous and followed by an extensive uplifting and erosion after the Late Cretaceous. This has brought about great changes to the temperature and pressure conditions of the shales, which is vitally important for the accumulation and preservation of shale gas. Based on the burial and thermal history, averaged TOC and porosity data, geological and geochemical models for the two sets of shales were established. Within each of the shale units, gas generation was modeled and the evolution of the free gas content was calculated using the PVTSim software. Results show that the free gas content in the Lower Cambrian and Lower Silurian shales in the studied area reached the maxima of 1.98–2.93 m3/t and 3.29–4.91 m3/t, respectively (under a pressure coefficient of 1.0–2.0) at their maximum burial. Subsequently, the free gas content continuously decreased as the shale was uplifted. At present, the free gas content in the two sets of shales is 1.52–2.43 m3/t and 1.94–3.42 m3/t, respectively (under a current pressure coefficient of 1.0–2.0). The results are roughly coincident with the gas content data obtained from in situ measurements in the Weiyuan area. We proposed that the Lower Cambrian and Lower Silurian shales have a shale gas potential, even though they have experienced a strong uplifting.  相似文献   

17.
In the Chelif basin, the geochemical characterization reveals that the Upper Cretaceous and Messinian shales have a high generation potential. The former exhibits fair to good TOC values ranging from 0.5 to 1.2% with a max. of 7%. The Messinian series show TOC values comprised between 0.5 and 2.3% and a high hydrogen index (HI) with values up to 566 mg HC/g TOC. Based on petroleum geochemistry (CPLC and CPGC) technics, the oil-to source correlation shows that the oil of the Tliouanet field display the same signature as extracts from the Upper Cretaceous source rocks (Cenomanian to Campanian). In contrast, oil from the Ain Zeft field contains oleanane, and could thus have been sourced by the Messinian black shale or older Cenozoic series. Two petroleum systems are distinguished: Cretaceous (source rock) – middle to upper Miocene (reservoirs) and Messinian (source rock)/Messinian (reservoirs). Overall, the distribution of Cretaceous-sourced oil in the south, directly connected with the surface trace of the main border fault of the Neogene pull-apart basin, rather suggests a dismigration from deeper reservoirs located in the parautochthonous subthrust units or in the underthrust foreland, rather than from the Tellian allochthon itself (the latter being mainly made up of tectonic mélange at the base, reworking blocks and slivers of Upper Cretaceous black shale and Lower Miocene clastics). Conversely, the occurrence of Cenozoic-sourced oils in the north suggests that the Neogene depocenters of the Chelif thrust-top pull-apart basin reached locally the oil window, and therefore account for a local oil kitchen zone. In spite of their limited extension, allochthonous Upper cretaceous Tellian formations still conceal potential source rock layers, particularly around the Dahra Mountains and the Tliouanet field. Additionally they are also recognized by the W11 well in the western part of the basin (Tahamda). The results of the thermal modelling of the same well shows that there is generation and migration of oil from this source rock level even at recent times (since 8 Ma), coevally with the Plio-Quaternary traps formation. Therefore, there is a possibility of an in-situ oil migration and accumulation, even from Tellian Cretaceous units, to the recent structures, like in the Sedra structure. However, the oil remigration from deep early accumulations into the Miocene reservoirs is the most favourable case in terms of hydrocarbon potential of the Chelif basin.  相似文献   

18.
Cretaceous sedimentary rocks of the Mukalla, Harshiyat and Qishn formations from three wells in the Jiza sub-basin were studied to describe source rock characteristics, providing information on organic matter type, paleoenvironment of deposition and hydrocarbon generation potential. This study is based on organic geochemical and petrographic analyses performed on cuttings samples. The results were then incorporated into basin models in order to understand the burial and thermal histories and timing of hydrocarbon generation and expulsion.The bulk geochemical results show that the Cretaceous rocks are highly variable with respect to their genetic petroleum generation potential. The total organic carbon (TOC) contents and petroleum potential yield (S1 + S2) of the Cretaceous source rocks range from 0.43 to 6.11% and 0.58–31.14 mg HC/g rock, respectively indicating non-source to very good source rock potential. Hydrogen index values for the Early to Late Cretaceous Harshiyat and Qishn formations vary between 77 and 695 mg HC/g TOC, consistent with Type I/II, II-III and III kerogens, indicating oil and gas generation potential. In contrast, the Late Cretaceous Mukalla Formation is dominated by Type III kerogen (HI < 200 mg HC/g TOC), and is thus considered to be gas-prone. The analysed Cretaceous source rock samples have vitrinite reflectance values in the range of 0.37–0.95 Ro% (immature to peak-maturity for oil generation).A variety of biomarkers including n-alkanes, regular isoprenoids, terpanes and steranes suggest that the Cretaceous source rocks were deposited in marine to deltaic environments. The biomarkers also indicate that the Cretaceous source rocks contain a mixture of aquatic organic matter (planktonic/bacterial) and terrigenous organic matter, with increasing terrigenous influence in the Late Cretaceous (Mukalla Formation).The burial and thermal history models indicate that the Mukalla and Harshiyat formations are immature to early mature. The models also indicate that the onset of oil-generation in the Qishn source rock began during the Late Cretaceous at 83 Ma and peak-oil generation was reached during the Late Cretaceous to Miocene (65–21 Ma). The modeled hydrocarbon expulsion evolution suggests that the timing of oil expulsion from the Qishn source rock began during the Miocene (>21 Ma) and persisted to present-day. Therefore, the Qishn Formation can act as an effective oil-source but only limited quantities of oil can be expected to have been generated and expelled in the Jiza sub-basin.  相似文献   

19.
Detailed bulk geochemistry and organo-petrography of outcrop Cretaceous sediments (with no significant effects of weathering) from the Calabar Flank, southeast Nigeria were performed to understand the organic carbon source, accumulation and degradation, and paleo-climatic, paleoceanographic and paleoenvironmental conditions in West Africa during Early Cretaceous (Aptian) to Maastrichtian times. This study was based on microscopic, elemental analyses (organic carbon, nitrogen, iron and sulphur), Rock-eval pyrolysis and carbon-isotope analyses. In general, the Calabar Flank shales are characterised by highly variable total organic carbon (TOC) contents, which range between 0.1% in Aptian–Albian Mfamosing Limestone and 9.9% in the Awi Formation sediments. The organic matter (OM) is a mixture of immature to early-mature marine and terrigenous OM of types III and IV. This is indicated by low hydrogen indices (HI value (10–190 mg HC/g TOC), Tmax (417–460 °C), vitrinite reflectance %Ro (0.39–0.62 %Ro), low to high C/N ratios (3.4–1158.0) and high amounts of terrigenous macerals (vitrinite + inertinite). Based on carbon isotope, C/N ratios and sulphate reduction index (SRI), OM degradation (up to 70%, SRI > 2.5) is most pronounced for shales deposited in a marine environment. The geochemical and petrographic data indicate that local factors such as low bioproductivity, down slope transport and redeposition of sediments from a fluvial–deltaic basin to nearshore facies, shallower, oxic and mildly oxygen-deficient environments, humid–arid paleogeographic conditions, specifically controlled the amount and quality of the OM during Aptian–Mastrichtian stages where marine sediments have been assumed to be deposited during the global anoxic events. Therefore, the order of the main factors controlling OM content in sediments are: input of terrigenous material transported from the land > low OM productivity by marine photoautotrophs > low preservation.  相似文献   

20.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号