首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A geological and geochemical study has been carried out to investigate the relationships between major mud volcano structures and deep fluid migration in the Cheleken peninsula, in the South Caspian Basin. The fluid geochemistry allowed the origin and migration of the saline waters and the hydrocarbons to be deduced along with the regional source and reservoir rocks. The emitted waters formed by the mixing of deep highly saline water from the main source rocks of the Maykop Fm with the Caspian-like pore water contained in the Pliocene reservoirs. The water composition is very similar to that emitted by the mud volcanoes in Azerbaijan, allowing comparisons to be done between the reservoirs in the western and eastern sides of the South Caspian Basin. The associated oil is derived from a mixed type II/III kerogen deposited in a sub-oxic marine environment and generated during the early oil window. The oil biomarkers indicate that the source rock is the Maykop Fm., as previously determined for the other areas of the South Caspian Basin.The spontaneous emissions, showing different morphologies, are mainly aligned along normal and transtensive fault systems, which provide effective pathways for rapid fluid ascent from deep reservoirs to the surface.  相似文献   

2.
Located on the West Iberian margin, between Cabo Carvoeiro and Cabo da Roca, the Estremadura Spur is a trapezoidal promontory elongated in an east-west direction, extending until the Tore seamount. Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (Lourinhã Monocline). Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. The characterization of these features and the understanding of the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor.The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. It is concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary, as indicated by the buried pockmarks at different depths below the seabed. The vertical stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure.  相似文献   

3.
Defining the 3D geometry and internal architecture of reservoirs is important for prediction of hydrocarbon volumes, petroleum production and storage potential. Many reservoirs contain thin shale layers that are below seismic resolution, which act as impermeable and semi-permeable layers within a reservoir. Predicting the storage volume of a reservoir with thin shale layers from conventional seismic data is an issue due to limited seismic resolution. Further, gas chimneys indicative of gas migration pathways through thin shale layers, are not easily defined by conventional seismic data. Additional information, such as borehole data, can be used to aid mapping of shale layers, but making lateral predictions from 1D borehole data has high uncertainty. This paper presents an integrated workflow for quantitative seismic interpretation of thin shale layers and gas chimneys in the Utsira Formation of the Sleipner reservoir. The workflow combines the use of attribute and spectral analysis to add resolution to conventional seismic amplitude data. Detailed interpretation of these analyses reveals the reservoirs internal thin shale architecture, and the presence of gas chimneys. The comprehensive interpretation of the reservoirs internal structure is used to calculate a new reservoir storage volume. This is done based on the distribution of sand and interpreted shale layers within the study area, for this active CO2 storage site.  相似文献   

4.
This study presents seismic observation of pipe anomalies from offshore Nigeria, outcrops of blow-out pipes from Rhodes, Greece, and geophysical modelling of an acoustic pipe. The studies give insight into how pipes form, their internal structure, the seismic image and geophysical artefacts related to the pipes. Over one hundred seafloor craters, 100 m-700 m wide and up to 30 m deep, have been observed on the seafloor offshore Nigeria. They are underlain by interpreted cones and seismic pipe anomalies that can be traced down to reservoir zones at 1000 m-1300 m below the seafloor. The seismic pipe anomalies are 50 m-150 m wide and almost vertical. They are interpreted as up-scaled pipes found in outcrops on Rhodes, Greece. The outcrops show pipe-related structures at three levels. Lowest, the reservoir rock contains metre-sized cavities which are filled with a mixture of clay derived from the overlying cap rock. In the middle, several circular to oval structures in plane view of pipes are observed in the lowest part of the cap rock. Highest, 15 m into the clay cap rock, strongly sheared country rock forms circular structures with a core of structureless clay. Based on outcrop observation on Rhodes we constructed an acoustic model of a 50 m wide and 1000 m long pipe. Seismic modelling proves that such pipes would be expressed in seismic data, that they are similar to the seismic pipe anomalies offshore Nigeria but this study also revealed that prominent intra-pipe reflections are artefacts. A formation model for the pipes is suggested: High fluid overpressure in the reservoir generated hydro fractures from the reservoir to seafloor where a mixture of gas and fluid flowed at high speed to form pipes, cones and seafloor craters. After hours to weeks of gas and fluid flow through the pipe the pore pressure in the reservoir dropped and the blow-out terminated. Muddy slurry fell back and plugged the cavity in the reservoir and the pipe.  相似文献   

5.
6.
During basin burial, interstitial fluids initially trapped within the sedimentary pile easily move under thermal and pressure gradients. As the main mechanism is linked to fluid overpressure, such fluids play a significant role on frictional mechanics for fault reactivation and sediment deformation.The Lodève Permian Basin (Hérault, France) is an exhumed half-graben with exceptional outcrop conditions providing access to barite-sulfide mineralized systems and hydrocarbon trapped into syn-rift roll-over faults. Architectural studies show a cyclic infilling of fault zone and associated bedding-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfur isotope geothermometer. We conclude that a polyphase history of trapping occurred during Permian syn-rift formation of the basin.The first stage is characterized by an implosion breccia cemented by silicifications and barite during an abrupt pressure drop within fault zone. This mechanism is linked to the dextral strike-slip motion on faults and leads to a first sealing of the fault zone by basinal fluid mineralization.The second stage consists of a succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action. This corresponds to periodic reactivations of fault planes and bedding-controlled opening localized at sulphide-rich micro-shearing structures showing a normal movement. This process formed the main mineralized ore bodies by the single action of fluid overpressure fluctuations undergoing changes in local stress distribution.The last stage is associated with the formation of dextral strike-slip pull-apart infilled by large barite and contemporaneous hydrocarbons under suprahydrostatic pressure values. This final tectonic activation of fault is linked to late basinal fluids and hydrocarbon migration during which shear stress restoration on the fault plane is faster than fluid pressure build-up.This integrated study shows the interplay action between tectonic stress and fluid overpressure in fault reactivation during basin burial that clearly impact potential economic reservoirs.  相似文献   

7.
Calcite veins and cements occur widely in Carboniferous and Permian reservoirs of the Hongche fault zone, northwestern Junggar Basin in northwest China. The calcites were investigated by fluid inclusion and trace-element analyses, providing an improved understanding of the petroleum migration history. It is indicated that the Hongche fault behaved as a migration pathway before the Early Cretaceous, allowing two oil charges to migrate into the hanging-wall, fault-core and footwall reservoirs across the fault. Since the Late Cretaceous, the Hongche fault has been sealed. As a consequence, meteoric water flowed down only into the hanging-wall and fault-core reservoirs. The meteoric-water incursion is likely an important cause for degradation of reservoir oils. In contrast, the footwall reservoirs received gas charge (the third hydrocarbon event) following the Late Cretaceous. This helps explain the distribution of petroleum across the fault. This study provides an example of how a fault may evolve as pathway and seal over time, and how reservoir diagenetic minerals can provide clues to complex petroleum migration histories.  相似文献   

8.
A group of nearly 400 pipe structures from the continental slope of northern Namibia are analysed for their spatial and temporal distribution. The pipes most likely formed as a result of highly focused fluid venting, and understanding the factors controlling their distribution in space and time is key to their genesis. We analysed their spatio-temporal distribution using an arbitrary chronostratigraphic timescale, from which it is concluded that the pipes did not form at the same time. Pipe formation is shown to be intermittent and persistent, with 2–29 pipes forming in each of the >20 arbitrary time intervals that are considered to span the Neogene period. The spatial distribution of these pipes is clustered to dispersed. Spatial statistics conducted on the distribution of pipe formation timings have shown that two statistically significant groups of pipes exist within the population, (1) in the North and West and (2) in the South, with the former occurring prior to the latter. Locally, pipe formation is sporadic with clusters and outliers occurring during the same time period. A conceptual model is proposed whereby pipe formation in specific locations is the result of localised breaching of the seals for isolated pressure cells which are locally independent yet broadly controlled. An inferred basinal fluid source is thought to determine the broader patterns of pipe formation, and the focus of this fluid source shifts from North to South with time. At a local scale, multiple local factors interact producing a sporadic pipe formation distribution through a prolonged period of highly focused fluid migration. Once formed, the pipes continued to focus fluids intermittently, leading in some cases to later pockmark formation.  相似文献   

9.
Based on the analysis of the high-resolution 3D seismic data from the SW Barents Sea we study the hydrocarbon plumbing system above the Snøhvit and Albatross gas field to investigate the geo-morphological manifestation and the dynamics of leakage from the reservoir. Fluid and gas escape to the seafloor is manifested in this area as mega-pockmarks 1–2 km-wide, large pockmarks (<100 m wide) and giant pockmarks 100–300 m-wide. The size of the mega pockmarks to the south of the study area may indicate more vigorous venting, whilst the northern fluid flow regime is probably characterised by a widespread fluid and gas release. Buried mega depressions and large-to-giant pockmarks are also identified on the base Quaternary and linked to deep and shallow faults as well as to seismic pipes. A high density of buried and seafloor giant pockmarks occur above a network of faults overlying an interpreted Bottom Simulating Reflector (BSR), whose depth coincides with the estimated base of the hydrate stability zone for a thermogenically derived gas hydrate with around 90 mol% methane. Deep regional faults provide a direct route for the ascending thermogenic fluids from the reservoir, which then leaked through the shallow faults linked to seismic pipes. It is proposed that the last episodic hydrocarbon leakage from the reservoir was responsible for providing a methane source for the formation of gas hydrates. We inferred that at least two temporally and dynamically different fluid and gas venting events took place in the study area: (1) prior to late Weichselian and recorded on the Upper Regional Unconformity (URU) and (2) following the Last Glacial Maximum between ∼17 and 16 cal ka BP and recorded on the present-day seafloor.  相似文献   

10.
在已了解的松辽盆地登娄库—永安地区构造和沉积演化特点的基础上,利用现有钻井的岩心资料、测井资料和地震资料,对该地区的成藏模式特征从运移方式和生储盖空间组合两个方面上进行了研究和分类,分析了各自形成的主控因素.研究表明,该区域地层具有断坳双层结构,按油气运移类型划分,在断陷期主要发育两种油气成藏模式,分别为原生油气成藏模式和次生油气成藏模式;在坳陷期主要发育次生油气成藏模式和混生油气藏.从储层与烃源岩的空间组合上来看,区域内主要发育有上生下储、下生上储和自生自储这三种油气成藏模式.形成这些不同成藏模式的主要因素是该区深至基底的大型断裂构造和继承性断裂、反转构造以及固有沉积环境等.  相似文献   

11.
In this paper, we address the irregular behaviour and geometry of the gas hydrate stability zone (HSZ) inferred from reflection seismic data in relation to heat-flow measurements. The study area lies in the hanging wall of the Posolsky fault in the Southern Baikal Basin (SBB). Side-scan sonar imagery already revealed an undulating antithetic active fault structure and several isolated active vent structures. Remarkably, these fluid discharge structures occur only where the base of the hydrate stability zone (BHSZ), as inferred from seismic reflection profiles, is fluctuating and discontinuous, independent of lake floor morphology. The correlation between the interpreted BHSZ and heat-flow data across the Malenki seep is reasonable. On a seismic profile south of the fluid escape features, the BHSZ is expressed as an oscillatory, but continuous reflection, and shows poor correlation with heat-flow measurements. In nearly all cases, measured heat-flow exceeds inferred heat-flow. Additionally, the local inferred minima are anomalously low compared to the expected background values in the SBB. These observations suggest that the present-day hydrate accumulation and its (meta-)stability are more complicated than originally suspected. The limited area of these anomalies, their amplitudes and their occurrence in the immediate vicinity of faults and fluid escape features suggest that fluid convection cells disturb local gas hydrate stability conditions.  相似文献   

12.
This study investigates the distribution and evolution of seafloor seepage in the vicinity of the salt front, i.e., the seaward boundary of salt-induced deformation in the Lower Congo Basin (LCB). Seafloor topography, backscatter data and TV-sled observations indicate active fluid seepage from the seafloor directly at the salt front, whereas suspected seepage sites appear to be inactive at a distance of >10 km landward of the deformation front. High resolution multichannel seismic data give detailed information on the structural development of the area and its influence on the activity of individual seeps during the geologic evolution of the salt front region. The unimpeded migration of gas from fan deposits along sedimentary strata towards the base of the gas hydrate stability zone within topographic ridges associated with relatively young salt-tectonic deformation facilitates seafloor seepage at the salt front. Bright and flat spots within sedimentary successions suggest geological trapping of gas on the flanks of mature salt structures in the eastern part of the study area. Onlap structures associated with fan deposits which were formed after the onset of salt-tectonic deformation represent potential traps for gas, which may hinder gas migration towards seafloor seeps. Faults related to the thrusting of salt bodies seawards also disrupt along-strata gas migration pathways. Additionally, the development of an effective gas hydrate seal after the cessation of active salt-induced uplift and the near-surface location of salt bodies may hamper or prohibit seafloor seepage in areas of advanced salt-tectonic deformation. This process of seaward shifting active seafloor seepage may propagate as seaward migrating deformation affects Congo Fan deposits on the abyssal plain. These observations of the influence of the geologic evolution of the salt front area on seafloor seepage allows for a characterization of the large variety of hydrocarbon seepage activity throughout this compressional tectonic setting.  相似文献   

13.
High resolution and multichannel seismic profiles coupled with multibeam echosounder (seafloor relief) data, acquired along the northern Sicily continental margin (southern Tyrrhenian Sea), document the occurrence of mound and pockmark features, revealing fluid escape processes. Along this margin, morphology of the high-gradient continental slope is irregular due to the presence of structural highs, slope failures and canyons, and is interrupted by flat areas at a mean depth of 1500 m.Seismostratigraphic analysis tools and methods were used to identify fluid escape structures and to work out a classification on the basis of their morpho-acoustic characteristics. The detailed 3D bathymetric chart was used to define the top view morphologic features and their areal distribution. With the aim to evaluate the geochemical content of fluids, we collected a 2.3 m long sediment core in correspondence of a pockmark at a depth of 414 m. Pore waters were sampled every 10 cm and analysed in relation to their conductivity (EC) and composition (δ18O, δD, Li, Na, K, Mg, F, Cl, Br, NO3, SO4).The new data show the occurrence of different types of structures with highly contrasting seismic and morphologic signatures, both dome-type and concave-upward structures. The latter have a characteristic circular shape and are known as pockmarks. Morphobathymetric, stratigraphic and structural data suggest that these structures occur along fault planes, mainly associated with diagenetic carbonates and fluid venting activity. Pockmarks could be the result of both fault and landslide structures, as they appear aligned along a straight direction and occur in proximity of the slope, and are associated with slope instabilities. The structural features are possibly associated with the recent tectonics mapped on-land as well as the widespread seismicity of the margin.Geochemical features reveal that pore water is slightly enriched in heavy isotopes with respect to Mediterranean seawater, while the distribution profiles of EC, ion concentration (Cl, SO4, Na, K, Mg, Ca), ion/Chloride ratios (Na/Cl, K/Cl, Ca/Cl, Mg/Cl and Alk/Cl) seem to indicate the existence of an external source of fluids and the occurrence of sediment-fluids interaction processes. A possible mechanism causing pore water freshening could be the destabilisation of gas hydrates.  相似文献   

14.
琼东南盆地气烟囱构造特点及其与天然气水合物的关系   总被引:5,自引:1,他引:4  
气烟囱是由于天然气(或流体)垂向运移在地震剖面上形成的异常反射,是气藏超压、构造低应力和泥页岩封隔层综合作用而形成。气烟囱在形成过程中携带大量富含甲烷气的流体向上运移到天然气水合物稳定带,其形成之后仍可作为后期活动的油气向上运移的特殊通道。在中中新世后,气烟囱是琼东南盆地气体向上运移的通道。地震识别出的似海底反射(BSR)分布区存在大量的气烟囱构造,通过速度、泥岩含量、流体势等属性参数及钻井资料,判断该烟囱构造为有机成因的泥底辟型烟囱构造。  相似文献   

15.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   

16.
The Pliocene and Pleistocene sediments at lease block Green Canyon 955 (GC955) in the Gulf of Mexico include sand-rich strata with high saturations of gas hydrate; these gas hydrate accumulations and the associated geology have been characterized over the past decade using conventional industry three-dimensional (3D) seismic data and dedicated logging-while-drilling (LWD) borehole data. To improve structural and stratigraphic characterization and to address questions of gas flow and reservoir properties, in 2013 the U.S. Geological Survey acquired high-resolution two-dimensional (2D) seismic data at GC955. Combined analysis of all available data improves our understanding of the geological evolution of the study area, which includes basin-scale migration of the Mississippi River sediment influx as well as local-scale shifting of sedimentary channels at GC955 in response to salt-driven uplift, structural deformation associated with the salt uplift, and upward gas migration from deeper sediments that charges the main gas hydrate reservoir and shallower strata. The 2D data confirm that the sand-rich reservoir is composed principally of sediments deposited in a proximal levee setting and that episodes of channel scour, interspersed with levee deposition, have resulted in an assemblage of many individual proximal levee deposit “pods” each with horizontal extent up to several hundred meters. Joint analysis of the 2D and 3D data reveals new detail of a complex fault network that controls the fluid-flow system; large east-west trending normal faults allow fluid flow through the reservoir-sealing fine-grained unit, and smaller north-south oriented faults provide focused fluid-flow pathways (chimneys) through the shallower sediments. This system has enabled the flow of gas from the main reservoir to the seafloor throughout the recent history at GC955, and its intricacies help explain the distributed occurrences of gas hydrate in the intervening strata.  相似文献   

17.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

18.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

19.
A variety of shallow gas indicators and fluid migration pathways have been interpreted from new sub-bottom profiler, multibeam bathymetry, side-scan sonar, and echo-sounder data together with geochemical analyses of sampled sediments from the northern Arafura Sea, offshore Northern Australia. This study provides new geological data and a seismic stratigraphy of the youngest units in the Money Shoal Basin, in an area that has not been closely studied in over 30 years. The shallow gas indicators include pockmarks, low frequency enhanced reflectors and acoustic blanking. These indicators are supported by gas within shallow cores. Geochemistry indicates that this gas has a microbial origin but deeper fluid movement is also suggested by the presence of interpreted hydrocarbon slicks based on synthetic aperture radar data. A region of likely hydrocarbon seepage is indicated by the clear coincidence of shallow gas indicators with an area of increased faulting and a zone of poor quality seismic data (recognised on conventional seismic data), together with anomalies (interpreted on remote-sensing data) aligned with mapped deep structures.  相似文献   

20.
Three-dimensional (3D) seismic data acquired for hydrocarbon exploration reveal that gas accumulations are common within the 2–3 km thick Plio-Pleistocene stratigraphic column of the south-western Barents Sea continental margin. The 3D seismic data have relatively low-frequency content (<40 Hz) but, due to dense spatial sampling, long source-receiver offsets, 3D migration and advanced interpretation techniques, they provide surprisingly detailed images of inferred gas accumulations and the sedimentary environments in which they occur. The presence of gas is inferred from seismic reflection segments with anomalously high amplitude and reversed phase, compared with the seafloor reflection, so-called bright spots. Fluid migration is inferred from vertical zones of acoustic masking and acoustic pipes. The 3D seismic volume allows a spatial analysis of amplitude anomalies inferred to reflect the presence of gas and fluids. At several locations, seismic attribute maps reveal detailed images of flat spots, inferred to represent gas–water interfaces. The data indicate a focused fluid migration system, where sub-vertical faults and zones of highly fractured sediments are conduits for the migration of gas-bearing fluids in Plio-Pleistocene sediments. Gas is interpreted to appear in high-porosity fan-shaped sediment lobes, channel and delta deposits, glacigenic debris flows and sediment blocks, probably sealed by low-permeability, clayey till and/or (glacio)marine sediments. Gas and fluid flow are here attributed mainly to rapid Plio-Pleistocene sedimentation that loaded large amounts of sedimentary material over lower-density, fine-grained Eocene oozes. This probably caused pore-fluid dewatering of the high-fluid content oozes through a network of polygonal faults. The study area is suggested to have experienced cycles of fluid expulsion and hydrocarbon migration associated with glacial–interglacial cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号