首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A sedimentary succession studied along three parallel seismic lines details a platform-edge progradation of 21–36 km in a northwesterly direction across the northwestern Barents Shelf. The intra-shelf clinoform succession is bounded at bottom and top by Base Olenekian and Early Ladinian seismic reflectors. The ca 800 m thick succession can be resolved into seven distinct clinothems. The system is characterized by an early sub-horizontal platform-edge trajectory with extensive progradation, limited relative sea level rise and restricted accommodation. Thereafter the system outlines a largely ascending trajectory, marking a major rise in relative sea level and creation of significant accommodation. The platform-edge appears to back-step along one line suggesting that relative sea level rise out-paced sediment influx and preserved a clinothem with a trajectory characterized by accretionary transgression. Thereafter the trajectory is overall ascending regressive, with some variation of the trajectory angle, culminating in a flat and finally descending trajectory with oblique clinoforms outlining extensive progradation and another period of limited accommodation. The clinoforms downlap onto a succession of basin-floor deposits which appear to comprise at least two separate periods of deposition, forming two separate units. The first five clinothems downlap onto the first basin-floor unit. The shift to downlap onto the second unit occurs around the second period of extensive platform-edge advance, suggesting limited accommodation promoted bypass of significant amounts of sediment to the basin floor.The Gardarbanken High has been considered an obstacle to Early Triassic sediment progradation in this part of the basin. This inference can be corroborated based on the seismic attributes, which show sediment infill and onlap near the High. The influence is also noticeable in the reduced slope relief near the High, indicating that the basin floor was topographically higher. However, other geometric attributes cannot provide any definitive measures of structural influence.The thickness of preserved topsets and the distance from the platform-edge to the toe pinch-out point of each clinothem is found to be inversely proportional. This relationship is most marked in the fully developed sigmoidal clinoforms, whereas the link appears weaker in the oblique clinoforms. A near-perfect correlation between clinothem average vertical thickness (the average sedimentary rock accumulation within the clinothem) and advance of the toe is found, with only a relatively close relationship between clinothem average vertical thickness and advance of the platform-edge. In the studied system it therefore appears the advance of the toe is governed solely by sediment influx while the advance of the platform-edge is also influenced by relative sea level.  相似文献   

2.
In order to assess the controlling factors on the evolution of a shelf margin and the timing of sediment transfer to deep waters, a seismic stratigraphic investigation was carried out in the Eocene interval of northern Santos Basin, offshore Brazil. The studied succession configures a complex of prograding slope clinoforms formed in a passive margin and encompasses five seismic facies and their respective depositional settings: shelf-margin deltas/shorefaces, oblique slope clinoforms, sigmoidal slope clinoforms, continental to shelfal deposits and mass-transport deposits. These are stratigraphically arranged as seven depositional sequences recording a total shelf-edge progradation of about 35 km and a progradation rate of 1,75 km/My. Two main types of sequences can be recognized, the first one (type A) being dominated by oblique slope clinoforms and shelf-margin deltas/shorefaces in which shelf-edge trajectories were essentially flat to descending and extensive sandy turbidites were deposited on the foreset to bottomset zones. Sequences of this type are dominated by forced-regressive units deposited during extensive periods of relative sea-level fall. Type B comprises an upper part represented by aggradational shelfal deposits and a lower part composed of mass-transport deposits and high-relief sigmoidal clinoforms with descending shelf-edge trajectory. Steep slump scars deeply cut the shelfal strata and constitutes the boundary between the two intervals observed in type B sequences. Sandy turbidites occur at the same frequency in both forced- and normal-regressive units but are more voluminous within forced-regressive clinoforms associated with shelf-margin deltas/shorefaces. Major slope failures and mass-transport deposits, by the other hand, occurred exclusively in type B sequences during the onset of sea-level fall and their volume are directly related to the thickness of the shelfal sediments formed during the pre-failure normal regressions.  相似文献   

3.
《Marine Geology》2005,219(4):207-218
A vertical succession of five composite sequences has been identified within the upper 100 m of the outer Bengal Shelf by means of high-resolution multi-channel seismic data. Each sequence consists predominantly of up to 100 km long and some 10 m thick forced regression systems tracts. The internal reflection pattern of the regressive units show mainly prograding oblique clinoforms. Intervening transgressive systems tracts are represented by seismically transparent or chaotic layers. On the outer shelf three of the sequences cause shelf aggradation and retrogradation, and two of them cause mainly shelf progradation. Based on the hierarchy of systems tracts, their calibration by comparison with eustatic sea-level curves and reconstructed paleoshoreline positions the composite sequences are interpreted as eccentricity driven eustatic 4th order (Milankovitch) cycles with a periodicity of about 100 ky. Internal unconformities mark cycles of 5th or higher order. An average subsidence of the outer shelf is estimated to be less than 0.4 mm/year during the last 345 ky. The correlation between the shelf growth pattern and sea-level fluctuations is consistent with the enhanced deposition on the eastern Bengal submarine fan from 465 to 125 ky B.P., as was observed by other authors.  相似文献   

4.
A seismic reflection transect crossing the central East Greenland continental margin south of the Scoresby Sund fjord system provides information regarding the long-term history of expansion and retreat of the Inland Ice. The shelf and slope sediments can be divided into three first-order units; the upper unit is interpreted to have a glacial origin. Within the up to 1000-m-thick glacial unit, six sequences were identified, representing at least as many phases of extensive ice sheet grounding on the shelf. Varying amounts of progradation and aggradation probably reflect successive phases in the glacial evolution of the region.  相似文献   

5.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

6.
The southern Makran fold-thrust belt, Pakistan, displays unique outcrop examples of well-exposed, kilometre-scale, listric growth faults that displace Miocene-age deltaic growth strata by several hundreds of metres to kilometers. The largest growth faults are counter-regional (landward-dipping), bounding major clastic depocentres exposed over areas > 1000 km2. Stratal offset along these faults can exceed 1.5 km. Fault-zone thicknesses range between ca. 100 and 400 m, and average fault thickness-displacement ratios are around 1:10. High-resolution satellite data show in unprecedented detail the faults and the stratigraphic architecture of associated growth sequences, which comprise kilometre-scale progradational clinoforms, thick mudstone units and basinwards wedging sandstone-shale deposits. The true vertical thickness of the syn-kinematic record is, in places, up to 8 km, making the outcrop examples equivalent to major growth faulted successions known from seismic data of large deltas, and at least an order of magnitude larger than other outcrop examples. A comparison of the Makran outcrops with seismic-reflection examples offshore NW Borneo reveals distinct similarities in the gross depocentre geometries and internal architecture. The key control for growth faulting is interpreted to result from sedimentary loading, with rapid sedimentary progradation causing the development of rollover synclines by differential compaction and fluid expulsion, and counter-regional growth faults preferentially forming on the basinward side of these synclines. The data and interpretations presented can be used to assess the key parameters that contribute to the development of growth faults and growth successions above shale, reinforcing structural and stratigraphic observations from seismic interpretation and modelling studies in demonstrating their occurrence in exposure.  相似文献   

7.
The Middle to Upper Jurassic Todagin assemblage in northwestern British Columbia, Canada, was deposited in the Bowser Basin above arc-related rocks of the Stikine terrane. Sedimentary structures indicate that a variety of gravity flow processes were involved in transport and deposition in deep-water slope environments. At Mount Dilworth, laterally continuous and channelized turbidites are interbedded with and overlain by mass-transport deposits in which sedimentary clasts are supported in a mudstone matrix. More than 50% of the succession consists of mass-transport deposits, indicating significant slope instability. A 300 m thick mass-transport complex exposed near the top of the succession is interpreted to result from tectonic activity, which triggered a major change in sediment supply from a local source area. At Todagin Mountain, a channel complex displays three successive channel-fills with associated overbank sedimentation units. Mass-transport deposits are rare, and confined to channel axes. Channels 1 and 2 are characterized by 40-50 m thick, ungraded pebble clast-supported conglomerate while the uppermost Channel 3 contains graded beds and occasional traction structures. The gradual change from erosive and amalgamated channel deposits at the base, to more aggradational channels at the top, is related to elevation of the equilibrium profile. Creation of accommodation favored aggradation on the mud-dominated slope succession and construction of well-developed channel-levee systems. The vertical succession exposed at Todagin Mountain is consistent with normal progradation of the slope under high sedimentation rates. In the Mount Dilworth area, extensional faulting associated with development of the restricted Eskay rift in the early Middle Jurassic produced a dissected basement above which the Todagin assemblage was deposited. These structures were inverted during collision of the Stikine and Cache Creek terranes, and likely played a major role in the stratigraphic evolution of the deep-water architectures.  相似文献   

8.
The Bay of Oran is part of the northern Algerian continental margin, located in the Western Mediterranean Sea between Europe and northern Africa. A regional terrace in ca. 320 m water depth described in earlier studies and a second deeper located one (∼1200 m water depth) provide an unusually vast amount of accommodation space for an observed prograding wedge. Seismo-stratigraphic interpretation of high-resolution reflection seismic data show different phases of mixed cool-water carbonate-siliciclastic deposition: (Ia) Initial aggradation with low dipping foreset deposition during early-Pliocene relative sea-level highstand. (Ib) Deposition transitions to progradation when aggradation reaches the base level. (IIa) Once progradation reaches the shelf break, terrace deposition is reduced to coarse fraction foreset deposits until it ceases entirely. (IIb) Finer sediments are bypassed and start to aggrade on the lower slope terrace until deposits reach the shelf terrace depth. (III) Due to accommodation space prolongation progradation recommences. Phase IIa and phase III deposits are separated by a hiatus. A drop in mean sea-level during the mid-Pleistocene will have caused the base level to fall below the upper strata, hence causing some reworking and redeposition. However, sea-level variations are not considered to be a main controlling factor of the depositional sequences. The evolution of this continuous Pliocene–Pleistocene mixed cool-water carbonate-siliciclastic prograding wedge is instead attributed to the controlling factor of this unusually vast amount of accommodation space. In closest proximity to the sea-floor, sparse recent sedimentation in form of 5–10 m thick sediment lobes can be observed in subbottom profiler data only. From a tectonic point of view, a prolongation of the Yusuf Fault into the survey area though expected by other authors could not be supported with the available dataset.  相似文献   

9.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls. In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts, and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised. This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma.  相似文献   

10.
Triassic platform-margin deltas in the western Barents Sea   总被引:1,自引:0,他引:1  
The Early to Middle Triassic in the Barents Sea was dominated by prograding transgressive-regressive sequences. Internal clinoform geometries indicate that sediments were derived from the Baltic Shield in the south and the Uralian Mountains in the east and southeast. These systems were formed in a large, relatively shallow epicontinental basin, where modest variations in relative sea-level relocated the shoreline significantly. This study shows the development of strike elongated depositional wedges that thicken just basinward of the platform-edge. Seismic facies and time-thickness maps show the position and development of platform-margin delta complexes within each sequence. Seismic clinoforms and trajectory analysis show significant lateral variation from the axis of the delta complex to areas adjacent to the main delivery system. Frequent toplap geometries are observed in proximity to coarse-grained deposits, while aggradation of seismic clinoforms characterizes areas laterally to the platform-margin deltas. Complex shifts in depocenters are revealed by large-scale compensational stacking pattern and relict platform breaks. Locally, relict breaks are created due to pre-existing paleo-topography. Platform-margin deltas can be identified by careful mapping of clinoform geometries, clinoform angles and trajectories. However, seismic analysis of prograding clinoform units indicate that the shoreline and delta complexes commonly are positioned landward of the platform-edge. Deposition of platform-margin deltas is sometimes caused by locally increased sediment supply during slightly rising relative sea-level, and occasionally caused by a regional drop in relative sea-level with significant shelf bypass.Development, position, thickness and facies distribution of platform deltas and platform-margin deltas of very broad low-relief basins, like the Triassic of the epicontinental Barents Sea basin, are strongly sensitive to changes in relative sea-level due to rapid emergence and submergence of wide areas, and to changes in position of major rivers supplying sand to the delta systems. In this respect, the depositional model of the present study deviates from models of clinoform successions obtained from small and narrow basins or siliciclastic platforms with high coarse-clastic sediment supply.  相似文献   

11.
12.
We present results from the first high-resolution seismic reflection survey of the inner Western Indus Shelf, and Indus Delta, Arabian Sea. The results show major regional differences in sedimentation across the shelf from east to west, as well as north to south, both since the Last Glacial Maximum (~20?ka) and over longer time scales. We identify 10 major regional reflectors, interpreted as representing sea level lowstands. Strong compressive folding is observed underlying a reflector we have called Horizon 6 in the north-western shelf, probably compression associated with the transpressional deformation of the Murray Ridge plate boundary. Downslope profiles show a series of well developed clinoforms, principally at the shelf edge, indicating significant preservation of large packages of sediment during lowstands. These clinoforms have developed close to zones of deformation, suggesting that subsidence is a factor in controlling sedimentation and consequently erosion of the Indus Shelf. These clinoforms fan out from dome features (tectonic anticlines) mostly located close to the modern shoreline.  相似文献   

13.
Although typically interpreted as 2D surfaces, faults are 3D narrow zones of highly and heterogeneously strained rocks, with petrophysical properties differing from the host rock. Here we present a synthetic workflow to evaluate the potential of seismic data for imaging fault structure and properties. The workflow consists of discrete element modeling (DEM) of faulting, empirical relations to modify initial acoustic properties based on volumetric strain, and a ray-based algorithm simulating prestack depth migration (PSDM). We illustrate the application of the workflow in 2D to a 100 m displacement normal fault in a kilometer size sandstone-shale sequence at 1.5 km depth. To explore the effect of particle size on fault evolution, we ran two DEM simulations with particle assemblages of similar bulk mechanical behavior but different particle size, one with coarse (1–3 m particle radii) and the other with fine (0.5–1.5 m particle radii) particles. Both simulations produce realistic but different fault geometries and strain fields, with the finer particle size model displaying narrower fault zones and fault linkage at later stages. Seismic images of these models are highly influenced by illumination direction and wave frequency. Specular illumination highlights flat reflectors outside the fault zone, but fault related diffractions are still observable. Footwall directed illumination produces low amplitude images. Hanging wall directed illumination images the shale layers within the main fault segment and the lateral extent of fault related deformation. Resolution and the accuracy of the reflectors are proportional to wave frequency. Wave frequencies of 20 Hz or more are necessary to image the different fault structure of the coarse and fine models. At 30–40 Hz, there is a direct correlation between seismic amplitude variations and the input acoustic properties after faulting. At these high frequencies, seismic amplitude variations predict both the extent of faulting and the changes in rock properties in the fault zone.  相似文献   

14.
The Pleistocene sedimentary growth pattern of the northern Catalonia continental shelf is characterized by the vertical stacking of seaward downlapping regressive deposits. These deposits are characterized by a progradational development, with oblique clinoforms of low angle in the middle continental shelf, that become more inclined seaward in the outer continental shelf and shelfbreak. Eustatic sea level fluctuations controlled the development of this sedimentary pattern, whereas sediment supply conditioned the nonuniform progradation along the continental shelf and subsidence due to both sediment loading and tectonics controlled its preservation through and along the continental shelf.  相似文献   

15.
The Laingsburg depocentre of the SW Karoo Basin, South Africa preserves a well-exposed 1200 m thick succession of upper Permian strata that record the early filling of a basin during an icehouse climate. Uniformly fine-grained sandstones were derived from far-field granitic sources, possibly in Patagonia, although the coeval staging and delivery systems are not preserved. Early condensed shallow marine deposits are overlain by distal basin plain siltstone-prone turbidites and volcanic ashes. An order of magnitude increase in siliciclastic input to the basin plain is represented by up to 270 m of siltstone with thin sandstone turbidites (Vischkuil Formation). The upper Vischkuil Formation comprises three depositional sequences, each bounded by a regionally developed zone of soft sediment deformation and associated 20-45 m thick debrite that represent the initiation of a major sand delivery system. The overlying 300 m thick sandy basin-floor fan system (Unit A) is divisible into three composite sequences arranged in a progradational-aggradational-retrogradational stacking pattern, followed by up to 40 m of basin-wide hemipelagic claystone. This claystone contains Interfan A/B, a distributive lobe system that lies 10 m beneath Unit B, a sandstone-dominated succession that averages 150 m thickness and is interpreted to represent a toe of slope channelized lobe system. Unit B and the A/B interfan together comprise 4 depositional sequences in a composite sequence with an overall basinward-stepping stacking pattern, overlain by 30 m of hemipelagic claystone. The overlying 400 m thick submarine slope succession (Fort Brown Formation) is characterized by 10-120 m thick sand-prone to heterolithic packages separated by 30-70 m thick claystone units. On the largest scale the slope stratigraphy is defined by two major cycles interpreted as composite sequence sets. The lower cycle comprises lithostratigraphic Units B/C, C and D while the upper cycle includes lithostratigraphic Units D/E, E and F. In each case a sandy basal composite sequence is represented by an intraslope lobe (Units B/C and D/E respectively). The second composite sequence in each cycle (Units C and E respectively) is characterized by slope channel-levee systems with distributive lobes 20-30 km down dip. The uppermost composite sequence in each cycle (Units D and F respectively) are characterised by deeply entrenched slope valley systems. Most composite sequences comprise three sequences separated by thin (<5 m thick) claystones. Architectural style is similar at individual sequence scale for comparable positions within each composite sequence set and each composite sequence. The main control on stratigraphic development is interpreted as late icehouse glacio-eustasy but along-strike changes associated with changing shelf edge delivery systems and variable bathymetry due to differential substrate compaction complicate the resultant stratigraphy.  相似文献   

16.
The North Sea Basin has been subsiding during the Quaternary and contains hundreds of metres of fill. Seismic surveys (170 000 km2) provide new evidence on Early Quaternary sedimentation, from about 2.75 Ma to around the Brunhes-Matuyama boundary (0.78 Ma). We present an informal seismic stratigraphy for the Early Quaternary of the North Sea, and calculate sediment volumes for major units. Early Quaternary sediment thickness is > 1000 m in the northern basin and >700 m in the central basin (total about 40 000 km3). Northern North Sea basin-fill comprises several clinoform units, prograding westward over 60 000 km2. Architecture of the central basin also comprises clinoforms, building from the southeast. To the west, an acoustically layered and mounded unit (Unit Z) was deposited. Remaining accommodation space was filled with fine-grained sediments of two Central Basin units. Above these units, an Upper Regional Unconformity-equivalent (URU) records a conformable surface with flat-lying units that indicate stronger direct glacial influence than on the sediments below. On the North Sea Plateau north of 59°N, the Upper Regional Unconformity (URU) is defined by a shift from westward to eastward dipping seismic reflectors, recording a major change in sedimentation, with the Shetland Platform becoming a significant source. A model of Early Quaternary sediment delivery to the North Sea shows sources from the Scandinavian ice sheet and major European rivers. Clinoforms prograding west in the northern North Sea Basin, representing glacigenic debris flows, indicate an ice sheet on the western Scandinavian margin. In the central basin, sediments are generally fine-grained, suggesting a distal fluvial or glacifluvial origin from European rivers. Ploughmarks also demonstrate that icebergs, derived from an ice sheet to the north, drifted into the central North Sea Basin. By contrast, sediments and glacial landforms above the URU provide evidence for the later presence of a grounded ice sheet.  相似文献   

17.
The lower part of the Carboniferous Shannon Basin of Western Ireland contains a deep-water succession which exceeds 1200 m in thickness that comprises five lithologically different units deposited within a confined, relatively narrow basin: (i) a calciclastic debris-flow and turbidite unit formed by resedimentation from nearby carbonate platforms, (ii) a siliciclastic black shale succession with former source potential which onlaps basin margins (Clare Shales), (iii) a sandstone-dominated turbidite formation, controlled by ponded accommodation and deposited axially in the basin (Ross Formation), (iv) a mudstone-rich turbidite-bearing succession, which onlaps basin margins (lower Gull Island Formation), and (v) a mudstone-dominated prograding slope succession (upper Gull Island Formation and lower Tullig Cyclothem), which grades transitionally upwards into deltaic deposits. The top unit records progradation at a time when basin differential subsidence had diminished significantly and local basin topography did not control deposition. The two upper mudstone-dominated units are different in terms of both sandstone content and their genetic significance within the overall basin-fill, and their potential relevance as reservoir analogues.The lower part of the Gull Island Formation contains three principal facies associations: (a) shallow turbidite channels and sheets representing channel margin and levee deposits, (b) mud-rich slumps, and (c) less than 1 m thick, rare, hemipelagic shales. More than 75% is deformed by soft-sediment deformation, but only to a smaller degree affecting sandstone units. The turbidites record transport to the ENE, along the axis of the basin, while the slumps were derived from an unstable northern slope and transported transversely into the basin towards the southeast. The distribution of turbidite sandstone and slumps is inversely proportional. Sandstones decrease in importance away from the basin axis as slumps increase in number and thickness. The lower part of the Gull Island Formation is interpreted to record progressive fill of a deep basin controlled by local, healed slope accommodation with onlap/sidelap of the basin margins. The instability resulted from a combination of fault-controlled differential subsidence between basin margin and basin axis, and high rates of sedimentation.The upper part of the Gull Island Formation is entirely dominated by mudstones, which grade upwards into siltstones. It contains rare, up to 15 m thick, isolated channels filled by turbidites, showing transport towards the east. The upper part records easterly progradation of a deep-water slope genetically tied to overlying deltaic deposits, and controlled by regional accommodation.The contrasts between the lower and upper parts of the Gull Island Formation show that onlapping/sidelapping turbidite successions have reservoir potential near basin axes, but that prograding deep-water slopes are less likely to have reservoir potential of significance. A suggested regional downlap surface between the two parts is a significant break and marker in terms of reservoir potential.  相似文献   

18.
The seismic stratigraphy, evolution and depositional framework of a sheared-passive margin, the Durban Basin, of South East Africa are described. Based on single-channel 2D seismic reflection data, six seismic units (A-F) are revealed, separated by major sequence boundaries. These are compared to well logs associated with the seismic data set. Internal seismic reflector geometries and sedimentology suggest a range of depositional regimes from syn-rift to upper slope and outer shelf. Nearshore and continental facies are not preserved, with episodic shelf and slope sedimentation related to periods of tectonic-induced base level fall. The sedimentary architecture shows a change from a structurally defined shelf (shearing phase), to shallow ramp and then terminal passive margin sedimentary shelf settings. Sedimentation occurred predominantly during normal regressive conditions with the basin dominated by the progradation of a constructional submarine delta (Tugela Cone) during sea-level lowstands (LST). The earlier phases of sedimentation are tectonic-controlled, however later stages appear to be linked to global eustatic changes.  相似文献   

19.
The sandy quartzose parts of the Utsira Formation, the Middle Miocene to mid Pliocene Utsira Sand, extends north–south along the Viking Graben near the UK/Norwegian median line for more than 450 km and 75–130 km east–west. The Utsira Sand is located in basin-restricted seismic depocentres, east of and below prograding sandy units from the Shetland Platform area with Hutton Sands. The Utsira Sand reaches thicknesses up to ca. 300 m in the southern depocentre and 200 m in the two northern depocentres with sedimentation rates up to 2–4 cm/ka. Succeeding Plio–Pleistocene is divided into seismic units, including Base Upper Pliocene, Shale Drape, Prograding Complex and Pleistocene. The units mainly consist of clay, but locally minor sands occur, especially at toes of prograding clinoforms (bottom-set sands) and in the Pleistocene parts, and the total thickness covering the Utsira Sand is in most places more than 800 m, but thins towards the margins.  相似文献   

20.
The seismic stratigraphy and sedimentary architecture of the Amundsen Gulf Trough and adjacent slope, Canadian Beaufort Sea margin, are investigated using a grid of 2-D seismic reflection data. The inner-shelf of the Amundsen Gulf Trough is interpreted to be composed predominantly of exposed or near-surface bedrock, overlain by a spatially-discontinuous veneer of glacimarine to open-marine sediment. There is a seaward transition from exposed bedrock on the inner-shelf to a thick (up to 500 m) outer-shelf prograding wedge of acoustically semi-transparent sediment. Eight seismic sequences, divided into four megasequences, are described from the outer-shelf stratigraphy. Eight till sheets are identified from Megasequences A to C, providing evidence for at least eight Quaternary ice-stream advances through the Amundsen Gulf Trough to the shelf break. A trough-mouth fan with a minimum volume of about 10,000 km3 is present on the adjacent slope. The Amundsen Gulf ice stream probably represented the most northwesterly marine-terminating ice stream of the Laurentide Ice Sheet through much of the Quaternary, providing a major route for ice and sediment transfer to the Arctic Ocean. The youngest till sheet within the Amundsen Gulf Trough, Megasequence D, was probably deposited by a subsidiary ice stream, the Anderson ice stream, subsequent to retreat of the last, Late Wisconsinan Amundsen Gulf ice stream. This provides evidence of dynamic ice-sheet behaviour and the reorganisation of the northwest Laurentide Ice Sheet margin during the last deglaciation. A number of buried glacigenic landforms, including palaeo-shelf break gullies and a grounding-zone wedge with a volume of 90 km3, are described from the Amundsen Gulf Trough stratigraphy. Lateral grounding-zone wedges are identified at the northern and southern lateral margins of the Amundsen Gulf and M'Clure Strait troughs, respectively, and are interpreted to have been formed roughly contemporaneously by ice streams in Amundsen Gulf and M'Clure Strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号