首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Paraná Basin, southern Brazil, has an atypical thermal and fluid history due to the occurrence of an episodic continental flood volcanism during the Early Cretaceous. So far, there are few data about the influence of this volcanic event on the paleotemperatures and paleofluids of the Paraná Basin sedimentary rocks. The Teresina Formation in the northern flank of the Ponta Grossa dyke swarm hosts high concentration of subsurface igneous rock bodies (sills and dykes), besides its covering by a hundreds meter thick volcanic rock cap. In this study, we used fluid inclusion analysis performed in horizontal and vertical calcite veins from the Teresina Formation and from a Late Cretaceous basic dyke to estimate paleotemperatures and to characterize the composition of diagenetic paleofluids. Homogenization temperatures of requilibrated fluid inclusions show that the Teresina Formation reached temperatures above 200 °C. Horizontal parallel bedding calcite veins from the Teresina Formation record low to high salinity (2–26 wt.% NaCl eq.) aqueous paleofluids. The prevalence of high salinity fluid inclusions associated with light hydrocarbon fluid inclusions indicates deep buried fluids. Fluid inclusions in vertical calcite vein from basic dyke comprise only low salinity aqueous fluids (0–3 wt.% eq.NaCl) interpreted as dominated by meteoric water. The recorded paleotemperatures are attributed to the heating by the Paraná volcanic event during the Early Cretaceous, with the thermal effect of the volcanic rock cap surpassing the effect of nearby sills and dykes. Estimated paleotemperatures higher than 200 °C would allow the generation of light liquid and gaseous hydrocarbons. Overpressured compartments in the Teresina Formation allowed the expulsion of buried pore fluids (high salinity aqueous fluids and hydrocarbons) to fracture systems, where they mixed with meteoric water. The input of meteoric water through fracture systems connected with the surface favored hydrocarbons degradation in the early stages of source rock maturation during the Early Cretaceous.  相似文献   

2.
Late stage extensional character of the Samail Ophiolite, as inferred from structure within the Ibra-Dasir blocks, supports gravity-driven final emplacement for the ophiolite. This however, is not related to ‘collapse’ off ramp-related domal culminations as speculated in Late Cretaceous thrusting scenarios. Domal structures of the Oman Mountains are Tertiary structures as originally inferred by Glennie et al. (1974). Gravity-driven emplacement of the ophiolite is related to the rising NE-directed Saih Hatat fold-nappe, now preserved within the Saih Hatat window and offshore along the Batinah coast as the Saih Hatat axis. Ar-Ar geochronology indicates that the Saih Hatat antiformal fold-nappe development (76–70 Ma) was occurring at the time the ophiolite was being emplaced onto the margin between 70–80 Ma. Evidence for extension is shown by: (1) the truncation of fold structures in the ophiolite pseudostratigraphy by the approximately planar, late stage basal fault (previously referred to as the ‘Samail thrust’ and now as the Samail detachment fault), (2) faults within the ophiolite cutting down section (e.g., Jabal Dimh fault), and (3) by the presence of both high angle and low angle normal faults, particularly in the metamorphic sole rocks at Wadi Tayin. Kinematic analysis of the high angle fault pairs in the metamorphic sole at Wadi Tayin indicates N–S pull-apart. These features of the Samail Ophiolite, along with similar features in the Bay of Islands Ophiolite in New Foundland, suggest that final stages of ophiolite obduction onto continental margins must involve extensional emplacement as a thin (< 5 km) sheet. This emplacement is accompanied by further thinning of the ophiolite sheet with internal development of both low and high angle normal faults.  相似文献   

3.
In the Embla oil field on the northern flank of the Mid North Sea High, the central North Sea, multiple quartz porphyric volcanic beds at ca. 4600 m depth form part of a volcano-sedimentary interval above the Caledonian basement as interpreted from seismic data. Zircon U–Pb laser ablation ICPMS date one bed to 374 ± 3 Ma, indicating that the volcanic rocks and interbedded sediments are early Famennian and correlate to the Buchan Formation. The volcanic rocks have been extensively clay and carbonate altered in a near-surface environment, but high field strength element data show that the protoliths were alkali rhyolites, yielding intra-plate signatures in tectonic discrimination diagrams. Famennian quartz porphyric volcanic rocks have also been reported from well A17-1 on the southern flank of the Mid North Sea High. The Famennian volcanism on the northern and southern flanks testify to an active magmatic environment in the central North Sea in the early Famennian, supporting the existence of a late Devonian proto-Central Graben rift extending northwards into the central North Sea. The rift is likely an early example of strain localisation to a zone of reduced crustal strength along the Caledonian suture between Avalonia and Baltica.  相似文献   

4.
Thirty-two flows (247 cores) were sampled in the V1 (Geotimes) and V2 (Lasail) volcanic units of the Semail ophiolite, Oman (Aswad, Fizh, Hilti, Sarami, Wuqbah, and Tayin massifs). Paleomagnetic analysis of the samples was complicated by a large overlap of the two components of magnetization carried by the rocks: a crystalline remanent magnetization (CRM) acquired in the present day field, probably during weathering, and an older CRM probably produced by oxidation of the original titanomagnetites during hydrothermal event(s). If the magnetization carried by the V1 samples was acquired during the hydrothermal event related to the emplacement of these lava, e.g., during and/or shortly after cooling, the tectonic unity of the northern domain has to be questioned and a differential rotation considered between the Aswad and Hilti-Sarami massifs but, by the time of emplacement of the V2 series, this northern area seems to behave as one large unit. As only one set of data is available for the southern Tayin-Sumail massif, it is premature but a possible relative rotation on the order of 90° can be suspected between the Hilti-Sarami and Tayin-Sumail massifs, rotation which would have occurred after emplacement of the V2 series.  相似文献   

5.
This study presents results for pyrolysis experiments conducted on immature Type II and IIs source rocks (Kimmeridge Clay, Dorset UK, and Monterey shale, California, USA respectively) to investigate the impact of high water pressure on source rock maturation and petroleum (oil and gas) generation. Using a 25 ml Hastalloy vessel, the source rocks were pyrolysed at low (180 and 245 bar) and high (500, 700 and 900 bar) water pressure hydrous conditions at 350 °C and 380 °C for between 6 and 24 h. For the Kimmeridge Clay (KCF) at 350 °C, Rock Eval HI of the pyrolysed rock residues were 30–44 mg/g higher between 6 h and 12 h at 900 bar than at 180 bar. Also at 350 °C for 24 h the gas, expelled oil, and vitrinite reflectance (VR) were all reduced by 46%, 61%, and 0.25% Ro respectively at 900 bar compared with 180 bar. At 380 °C the retardation effect of pressure on the KCF was less significant for gas generation. However, oil yield and VR were reduced by 47% and 0.3% Ro respectively, and Rock Eval HI was also higher by 28 mg/g at 900 bar compared with 245 bar at 12 h. The huge decrease in gas and oil yields and the VR observed with an increase in water pressure at 350 °C for 24 h and 380 °C for 12 h (maximum oil generation) were also observed for all other times and temperatures investigated for the KCF and the Monterey shale. This shows that high water pressure significantly retards petroleum generation and source rock maturation. The retardation of oil generation and expulsion resulted in significant amounts of bitumen and oil being retained in the rocks pyrolysed at high pressures, suggesting that pressure is a possible mechanism for retaining petroleum (bitumen and oil) in source rocks. This retention of petroleum within the rock provides a mechanism for oil-prone source rocks to become potential shale gas reservoirs. The implications from this study are that in geological basins, pressure, temperature and time will all exert significant control on the extent of petroleum generation and source rock maturation for Type II source rocks, and that the petroleum retained in the rocks at high pressures may explain in part why oil-prone source rocks contain the most prolific shale gas resources.  相似文献   

6.
New paleomagnetic data from 11 sites in layered gabbros and lava flows from the Oman Ophiolite indicate stable, early remagnetizations and suggest that the southern portion of the ophiolite (the Wadi Tayin, Sumail, Nakhl-Rustaq and Haylayn massifs) is relatively unrotated since detachment near the paleoridge. The gabbros possess a magnetization carried by a combination of primary and secondary magnetites derived from hydrothermal alteration. Evidence from positive tilt tests, constancy of remanence directions in differing magnetic mineralogies and agreement with previous paleomagnetic data, however, suggests that this remagnetization was acquired early – analogous to the remagnetization of the V2 volcanic series. Thus, the evidence implies that the southern portion of the ophiolite has been primarily translated from the paleoridge since the time of V2 remagnetization, and 120° of clockwise rotation affecting the northern Oman Ophiolite is internal to the ophiolite, rather than a combination of internal and global rotation as previously hypothesized. Given this evidence, we propose a simplified model of a rapid, active microplate rotation of a portion of the ophiolite resulting from spreading at an EPR-type propagating ridge at a high angle to the previous spreading direction. Paleomagnetic data from this and previous studies can be well explained by a rapidly rotating microplate, similar to the kinematic evolution documented for the Juan Fernandez microplate in the modern setting.  相似文献   

7.
东海陆架区中北部前第三系基底综合地球物理研究   总被引:6,自引:0,他引:6  
从地震、钻井资料出发,结合周边地质特征,推断东海陆架区中北部存在中生界和古生界地层。结合地震资料,正演消除了海底和新生界密度不均匀在重力场上的影响,定量反演重、磁力异常并求取了重力基底和磁性基底。重力基底的特征在东西分带的大背景下表现出“靠陆侧南北分块,靠洋侧东西分带”的特点。西湖凹陷区的磁性基底与重力基底埋深大致相同,不一致地方可能是受岩体的影响。西湖凹陷以西地区,包括海礁凸起等单元,总体出现磁性基底埋深比重力基底埋深深2km左右,初步解释为古生界地层的反映。中生界地层厚度的分布也具有东西分带和南北分块特点。西湖凹陷西缘的中生界地层厚度大,其中带中生界虽然含有一定的火山岩或火山碎屑岩,但沉积岩更多,这对下一步的油气勘探有利。  相似文献   

8.
The sandy quartzose parts of the Utsira Formation, the Middle Miocene to mid Pliocene Utsira Sand, extends north–south along the Viking Graben near the UK/Norwegian median line for more than 450 km and 75–130 km east–west. The Utsira Sand is located in basin-restricted seismic depocentres, east of and below prograding sandy units from the Shetland Platform area with Hutton Sands. The Utsira Sand reaches thicknesses up to ca. 300 m in the southern depocentre and 200 m in the two northern depocentres with sedimentation rates up to 2–4 cm/ka. Succeeding Plio–Pleistocene is divided into seismic units, including Base Upper Pliocene, Shale Drape, Prograding Complex and Pleistocene. The units mainly consist of clay, but locally minor sands occur, especially at toes of prograding clinoforms (bottom-set sands) and in the Pleistocene parts, and the total thickness covering the Utsira Sand is in most places more than 800 m, but thins towards the margins.  相似文献   

9.
Mixed layer clay minerals, vitrinite reflectance and geochemical data from Rock-Eval pyrolysis were used to constrain the burial evolution of the Mesozoic–Cenozoic successions exposed at the Kuh-e-Asmari (Dezful Embayment) and Sim anticlines (Fars province) in the Zagros fold-and-thrust belt. In both areas, Late Cretaceous to Pliocene rocks, show low levels of thermal maturity in the immature stages of hydrocarbon generation and early diagenetic conditions (R0 I–S and Ro% values < 0.5). At depths of 2–4 km, Tmax values (435–450 °C) from organic-rich layers of the Sargelu, Garau and Kazhdumi source rocks in the Kuh-e-Asmari anticline indicate mid to late mature stages of hydrocarbon generation. One dimensional thermal models allowed us to define the onset of oil generation for the Middle Jurassic to Eocene source rocks and pointed out that sedimentary burial is the main factor responsible for measured levels of thermal maturity. Specifically, the Sargelu and Garau Formations entered the oil window prior to Zagros folding in Late Cretaceous times, the Kazhdumi Formation during middle Miocene (syn-folding stage), and the Pabdeh Formation in the Late Miocene–Pliocene after the Zagros folding. In the end, the present-day distribution of oil fields in the Dezful Embayment and gas fields in the Fars region is primarily controlled by lithofacies changes and organic matter preservation at the time of source rock sedimentation. Burial conditions during Zagros folding had minor to negligible influence.  相似文献   

10.
This paper presents a revision of the Eocene to Miocene rock units of al Jabal al Akhdar (northeast Libya), based on the study of several surface sections in the vicinity of Benghazi and on earlier studies. The gradual disappearance of deep water marine fauna during the Early Eocene (Apollonia Formation) combined with gradual appearances of large-sized nummulitids and coarsening upwards of allochems during the Middle Eocene (Darnah Formation) indicate a shallowing-up trend, which continued to the end of the Miocene. Upper Eocene deposits are missing in the Benghazi area. The Al Bayda Formation (Oligocene) rests disconformably on the Middle Eocene Darnah Formation. The lower part of the Shahhat Marl Member (lower member of the Al Bayda Formation) is detrital and contains reworked Eocene Nummulites together with in situ Early Oligocene N. fichteli and N. vascus. The Algal Limestone (upper member of the Al Bayda Formation) represents Wilson's facies SMF 4, 5 and 6. Cyclicity in this member is notable and it appears to be associated with the regressive and transgressive global fourth-order Cycles TA4.3 to TA4.4. The lower part of the Al Abraq Formation is attributed to the transgressive global fourth-order Cycle TA4.5 and the upper part to Cycle TB1.1. The lower and middle parts of the Al Faidiyah Formation are attributed to the Miocene transgressive Cycles TB1.4 and TB1.5, with the upper part a result of sea level lowering related to Cycle TB2.1. Wilson's facies SMF 7 and SMF 8 typify this formation.  相似文献   

11.
The Wuqbah peridotites (Wuqbah massif, central Oman Ophiolite) constitute the mantle part of a complete ophiolitic sequence and their field deformation geometry is thought to reflect mantle dynamics in a fossil overlapping ridge settings (Girardeau et al., 2002). These peridotites comprise dominantly residual harzburgites and dunites. Nearly 70% of the harzburgites are clinopyroxene-free, and the rest contains less than 1%. The mineral chemistry of olivine, pyroxenes and spinel, and whole rock major and rare-earth element data, indicate that the Wuqbah peridotites are all strongly refractory and that they record a major percolation event, marked by strong enrichments in incompatible elements. At the massif scale, the Central Zone contains rocks with the most refractory features (20% melt extraction), as expected in an area of mantle upwelling. In the overlapping ridge senario, it corresponds to the overlap zone whose formation is discussed.  相似文献   

12.
Recent hydrographic measurements within the eastern South Pacific (1999–2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (<20 μmol kg−1). These new calculations estimate the total area and volume of the oxygen minimum zone to be 9.82±3.60×106 km2 and 2.18±0.66×106 km3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (<150 m) off Peru, shoaling towards the coast and extending well into the euphotic zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ∼37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159–1168] and provide new baseline data useful for studies on the role of oxygen in the degradation of organic matter in the water column and the related implications for biogeochemical cycles. Coastal upwelling zones along the eastern Pacific combine with general circulation to provide a mechanism that allows renewal of upper Pacific Deep Water, the most oxygen-poor and oldest water mass of the world oceans.  相似文献   

13.
The gas generative potential of organic matter is one key parameter for the calculation of total gas in place (GIP) when evaluating thermogenic shale gas plays. Having first demonstrated that late gas-forming structures are present in coals of anthracite rank (>2% R0) we go on to examine other rocks at the immature stage of maturity and report on how to recognise which might generate significant amounts of late dry gas at geologic temperatures well in excess of 200 °C in the zone of metagenesis (R0 > 2.0%), i.e. subsequent to primary and secondary gas generation by thermal cracking of kerogen or retained oil. Such a distinction could clearly be of major value when assessing risks and pinning down “sweet spots”. A large selection (51 samples) of source rocks, i.e. shales and coals, stemming from different depositional environments and containing various types of organic matter which contribute to the formation of petroleum in putative gas shales were investigated using open- and closed-system pyrolysis methods for the characterisation of kerogen type, molecular structure, and late gas generative behaviour. A novel, rapid closed-system pyrolysis method, which consists of heating crushed whole rock samples in MSSV-tubes from 200 °C to 2 different end temperatures (560 °C; 700 °C) at 2 °C/min, provides the basis for a newly proposed approach to discriminate between source rocks with low, high, or intermediate late gas potential. It is noteworthy that late gas potential goes largely unnoticed when only open-system pyrolysis screening-methods are used. High late gas potentials seem to be mainly associated with heterogeneous admixtures or structures in terrestrially influenced, in some cases marine, Type III and Type II/III coals and shales. Aromatic and/or phenolic signatures are therefore indicative of the possible presence of elevated late gas potential at high maturities. High temperature methane was calculated to potentially contribute an additional 10–40 mg/g TOC, which would equal up to 30% of the total initial primary petroleum potential in many cases. Low late gas potentials are associated with homogeneous, paraffinic organic matter of aquatic lacustrine and marine origin. Source rocks exhibiting intermediate late gas potentials might generate up to 20 mg/g TOC late dry gas and seem to be associated with heterogeneous marine source rocks containing algal or bacterial derived precursor structures of high aromaticity, or with aquatic organic matter containing only minor amounts of aromatic/phenolic higher land plant material.  相似文献   

14.
The Jabal Qusaybah Anticline, in north Oman, is affected by syn-folding strike-slip and extensional fault zones developed during foreland deformation ahead of the Northern Oman Mountains thrust wedge, in Cenozoic times. Migration of fluids in fault-damage zones is recorded in complex calcite vein networks. By employing the microthermometric and compositional microanalysis of the fluid inclusions (crush-leach), two distinct generations of veins have been studied. The aim was to determine the source of elevated salinity in fluids involved in their cementation and explain their compositional evolution through fluid-rock interactions. The ionic ratios (Na/Br and Cl/Br) obtained from crush-leach analysis give supporting evidence that the elevated salinity of fluid inclusions in both vein groups originated from an evaporated seawater beyond the onset of halite precipitation (residual brines). The results reveal a gradual increase in salinity of the fluids, F/Cl molar ratios, as well as Li/Cl molar ratios. These results imply the progressively increasing contribution of evaporitic residual brines and fluids that interacted with, or were derived from siliciclastic rocks. We suggest that the most likely origin of the former fluids is provided by residual brines associated with precipitation of the Ara evaporites (Cambrian). The regional driving mechanism for such a significant fluid migration is believed to be compaction-driven upward flow that was channeled into faults and fractures during major deformational events.  相似文献   

15.
The potential hydrothermal systems unexplored in the Southwest Indian Ocean   总被引:1,自引:0,他引:1  
Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°–16°E Section B and 16°–25°E Section C) and three at the eastern end (49°–52°E Section D, 52°–61°E Section E and 61°–70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°–47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.  相似文献   

16.
Although extensive studies have been conducted on unconventional mudstone (shales) reservoirs in recent years, little work has been performed on unconventional tight organic matter-rich, fine-grained carbonate reservoirs. The Shulu Sag is located in the southwestern corner of the Jizhong Depression in the Bohai Bay Basin and filled with 400–1000 m of Eocene lacustrine organic matter-rich carbonates. The study of the organic matter-rich calcilutite in the Shulu Sag will provide a good opportunity to improve our knowledge of unconventional tight oil in North China. The dominant minerals of calcilutite rocks in the Shulu Sag are carbonates (including calcite and dolomite), with an average of 61.5 wt.%. The carbonate particles are predominantly in the clay to silt size range. Three lithofacies were identified: laminated calcilutite, massive calcilutite, and calcisiltite–calcilutite. The calcilutite rocks (including all the three lithofacies) in the third unit of the Shahejie Formation in the Eocene (Es3) have total organic carbon (TOC) values ranging from 0.12 to 7.97 wt.%, with an average of 1.66 wt.%. Most of the analyzed samples have good, very good or excellent hydrocarbon potential. The organic matter in the Shulu samples is predominantly of Type I to Type II kerogen, with minor amounts of Type III kerogen. The temperature of maximum yield of pyrolysate (Tmax) values range from 424 to 452 °C (with an average of 444 °C) indicating most of samples are thermally mature with respect to oil generation. The calcilutite samples have the free hydrocarbons (S1) values from 0.03 to 2.32 mg HC/g rock, with an average of 0.5 mg HC/g rock, the hydrocarbons cracked from kerogen (S2) yield values in the range of 0.08–57.08 mg HC/g rock, with an average of 9.06 mg HC/g rock, and hydrogen index (HI) values in the range of 55–749 mg HC/g TOC, with an average of 464 mg HC/g TOC. The organic-rich calcilutite of the Shulu Sag has very good source rock generative potential and have obtained thermal maturity levels equivalent to the oil window. The pores in the Shulu calcilutite are of various types and sizes and were divided into three types: (1) pores within organic matter, (2) interparticle pores between detrital or authigenic particles, and (3) intraparticle pores within detrital grains or crystals. Fractures in the Shulu calcilutite are parallel to bedding, high angle, and vertical, having a significant effect on hydrocarbon migration and production. The organic matter and dolomite contents are the main factors that control calcilutite reservoir quality in the Shulu Sag.  相似文献   

17.
A three-dimensional reconstruction of burial and palaeogeothermal conditions is presented for Miocene sediments of the Carpathian Foredeep beneath the Outer Western Carpathians fold and trust belt in the eastern part of the Czech Republic. The sedimentary units involved include autochthonous Paleozoic sequences, Miocene deposits of the Carpathian Foredeep and of the Western Carpathian nappe system. Reservoir rocks with economic oil and gas accumulations occur in the fractured crystalline basement and in the Neogene Carpathian Foredeep. The studied Vizovice area, is characterized by rocks representing both Variscan and Carpathian orogenic cycles. The 3D thermal maturity and subsidence model presented allows the significance of both tectonic events to be evaluated. The model, calibrated by vitrinite reflectance from eight boreholes proved that eroded units related to the Variscan orogeny approach, in amount, those eroded during the Carpathian orogeny. The thickness of the eroded rocks does not exceed 300 m in either case. Vitrinite reflectance data from representative core samples of the Miocene organic matter show that Rr values increase with depth from 0.36 to 0.58%. A re-evaluation of archival data on the quantity and quality of organic matter shows that total organic carbon ranges from 0.20 to 2.92 wt%, and residual hydrocarbons (S2) from 0.04 to 8.48 mg HC/g rock. These results lead to the conclusion that Neogene Unit II that was interpreted as coastline-through to shallow-marine deposition environment within the Carpathian Foredeep in the Czech Republic is potential source rock for hydrocarbon accumulations.  相似文献   

18.
The Lower Cretaceous presalt section of the Kwanza Basin (Angola) is in the spotlight following the discoveries of petroleum systems in this basin, and more generally in the South Atlantic. These systems are mostly composed of continental carbonates in close association with volcanic rocks. This work is focused on the study of an offshore Kwanza presalt volcanic sequence characterized as Valanginian trachytic subaerial lava flows. A detailed petrological analysis of the altered trachyte in association with fluid inclusion microthermometry was conducted in order to depict the initial mineralogy (albite, sanidine, titanomagnetite) and obtain a paragenetic sequence (quartz, siderite, kaolinite, calcite). Thermodynamic equilibrium modelling of the trachytes alteration by meteoric fluids, over a range of temperatures (25 °C–200 °C) and CO2 partial pressure (pCO2: 0.01 mbar to 100 bar), were performed with PHREEQC, and compared to the observed paragenetic sequence. Some numerical simulations reflect the observed paragenesis. As a result, the pCO2 is constrained by the occurrence of siderite (from 0.1 bar at 50 °C to 30 bar at 125 °C) and kaolinite (from 0.2 bar at 50 °C to 1.2 bar at 125 °C). The simulations emphasize the need for a high pCO2 in the hydrothermal system, to achieve the observed trachyte transformation. After reaching equilibrium with the trachytes, the simulated fluids highlight a mid-alkaline to near neutral pH with high Fe, HCO3+CO3, and alkali concentrations. The palaeofluids could have evolved from Ca- and Mg-rich to Ca- and Mg-poor with increasing temperature. Inversely, Si concentrations are positively correlated with increasing temperatures. This methodology, integrating a petrological approach and numerical simulations, proves to be a powerful tool leading to better understanding of the proxies (pCO2, temperature, redox conditions) controlling paragenesis. To push further, these simulations are also a step toward improved understanding of palaeofluid evolutions in presalt systems and better prediction of reservoir quality.  相似文献   

19.
The Dongpu depression is located in the southern Bohai Bay Basin, North China, and it has abundant oil and gas reserves. There has been no systematic documentation of this depression's temperature field and thermal history. In this article, the present geothermal gradient and heat flow were calculated for 68 wells on the basis of 892 formation-testing data from 523 wells. Moreover, the Cenozoic thermal history was reconstructed using 466 vitrinite reflectance data from 105 wells. The results show that the Dongpu depression is characterized by a medium-temperature field between stable and active tectonic areas, with an average geothermal gradient of 34.8 °C/km and an average heat flow of 66.8 mW/m2. The temperature field in the Dongpu depression is significantly controlled by the Changyuan, Huanghe, and Lanliao basement faults and thin lithosphere thickness. The geothermal gradient twice experienced high peaks. One peak was during the Shahejie 3 Formation depositional period, ranging from 45 °C/km to 48 °C/km, and the second peak was in the middle and late of the Dongying Formation depositional period, ranging from 39 °C/km to 40 °C/km, revealing that the Dongpu depression experienced two strong tectonic rifts during the geothermal gradient high peak periods. The geothermal gradient began to decrease from the Neogene, and the geothermal gradient is 31–34 °C/km at the present day. In addition, these results reveal that source rock thermal evolution is controlled by the paleo temperature field of the Dongying Formation depositional period in the Dongpu depression. This study may provide a geothermal basis for deep oil and gas resource evaluation in the Dongpu depression.  相似文献   

20.
On 12 November 2006, 3 kg of sulfur hexafluoride were released in a 1.2 km long streak in the axial summit trough of the East Pacific Rise at 9°30′N to study how circulation and mixing affect larval dispersion. The first half of a tracer survey performed approximately 40 days after the injection found a small percentage of the tracer on the ridge axis between 9°30′N and 10°10′N, with the main concentration near 9°50′N, a site of many active hydrothermal vents. These observations provide evidence of larval connectivity between vent sites on the ridge. The latter half of the survey detected the primary patch of tracer west of the ridge and just south of the Lamont Seamounts, as a majority of the tracer had been transported off the ridge. However, by the end of the survey, the eastern edge of this patch was transported back to within 10 km of the ridge crest at 9°50′N by a reversal in the subinertial flow, suggesting another pathway for larvae between points along the ridge. Both the horizontal and vertical distributions of the tracer were complex and were likely heavily influenced by topography and vents in the area. Elevated tracer concentrations within the axial summit trough and an adjacent depression on the upper ridge flank suggest that tracers may be detained in such depressions. Correlated tracer/turbidity profiles provide direct evidence of entrainment of the tracer into vent plumes from 9°30′N to 10°N. A comparison of the vertical tracer inventory with neutral density vent-plume observations suggests that on the order of 10% of the tracer injected was entrained into vent plumes near the injection site. The results imply that effluent from diffuse hydrothermal sources and larvae of hydrothermal vent fauna can be entrained in significant quantities into plumes from discrete sources and dispersed in the neutrally buoyant plumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号