首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Whether or not there are extensional detachment faults in the Alboran basement can be tested directly because a part of the Alboran Basin is now emerged. These detachments, related to crustal thinning beneath the Alboran Basin, occurred from the Aquitanian to Tortonian. The resulting extensional geometries can be described in general terms. During the Serravalian a considerable southwest extension of the basin took place, accompanied by south-southeast extension in the northern Gibraltar Arc. Other detachments affected by Serravalian extension can be found. The spreading of the Alboran was nearly coeval with roughly westward migration of the Gibraltar mountain front.  相似文献   

2.
Analysis of multi-channel seismic data from the northern East China Sea Shelf Basin (ECSSB) reveals three sub-basins (Socotra, Domi, and Jeju basins), separated by structural highs (Hupijiao Rise) and faulted basement blocks. These sub-basins show a typical rift-basin development: faulted basement and syn-rift and post-rift sedimentation separated by unconformities. Four regional unconformities, including the top of acoustic basement, have been identified and mapped from multi-channel seismic data. Faults in the acoustic basement are generally trending NE, parallel to the regional structural trend of the area. The depths of the acoustic basement range from less than 1000 m in the northwestern part of the Domi Basin to more than 4500 m in the Socotra Basin and 5500 m in the Jeju Basin. The total sediment thicknesses range from less than 500 m to about 1500 m in the northwest where the acoustic basement is shallow and reach about more than 5500 m in the south.Interpretation of seismic reflection data and reconstruction of three depth-converted seismic profiles reveal that the northern ECSSB experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous was driven by the NW-SE crustal stretching of the Eurasian Plate, caused by the subduction of the Pacific Plate beneath the Eurasian Plate. Extension was the greatest during the early phase of basin formation; estimated rates of extension during the initial rifting are 2%, 6.5%, and 3.5% in the Domi, Jeju, and Socotra basins, respectively. A regional uplift terminated the rifting in the Late Eocene-Early Oligocene. Rifting and extension, although mild, resumed in the Early Oligocene; while fluvio-lacustrine deposition continued to prevail. The estimated rates of extension during the second phase of rifting are 0.7%, 0.8%, and 0.5% in the Domi, Jeju, and Socotra basins, respectively. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the post-rift phase of regional subsidence. Regional subsidence dominated the study area between the Early Miocene and the Late Miocene. An inversion in the Late Miocene interrupted the post-rift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Uplift and subsequent erosion were followed by regional subsidence.  相似文献   

3.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

4.
Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The trend of the Sufyan Sub-basin (E-W) is different from the general trend of Muglad Basin (NW-SE) and similar to Baggara basin in the west of Sudan and other basins in east Chad. The unique E-W trend, suggests that this Sub-basin originated by a mechanism different from Muglad Basin that is considered more extensional in origin. Five regional seismic lines are included to illustrate the structural and stratigraphic variation across the Sub-basin. Fault polygons maps for six horizons, four isopach maps, five cross-sections, and two associated kinematic models are presented in this study. Sufyan Sub-basin is characterized by rhombic geometry with three boundary faults; two of those faults exhibit dextral strike slip movement, with two depocenters at the western and eastern segments of the southern fault. Structural interpretation of Sufyan Sub-basin based on 2D seismic data highlights the style of strike-slip related structure. Negative flower structures, en-echelon faults, and rhombic geometry all suggest a significant component of a pull-apart transtensional movement in Sufyan Sub-basin. Other alternative scenarios for evolutionary history and the forming mechanism were introduced such as the oblique extension model. The Sufyan Sub-basin is believed to be highly affected by the Central African Shear Zone (CASZ). In this study, several transtension and oblique rift related features interpreted from Bouguer gravity map and seismic data are briefly described and illustrated. Based on this study, the favorable areas for hydrocarbon accumulation are the areas of flower structure and the areas that near to the two depocenters that controlled by the southern boundary fault.  相似文献   

5.
Magnetic and bathymetric studies on the Konkan basin of the southwestern continental margin of India reveal prominent NNW-SSE, NW-SE, ENE-WSW, and WNW-ESE structural trends. The crystalline basement occurs at about 5–6 km below the mean sea level. A mid-shelf basement ridge, a shelf margin basin, and the northern extension of the Prathap Ridge complex are also inferred. The forces created by the sea-floor spreading at Carlsberg Ridge since late Cretaceous appears to shape the present-day southwestern continental margin of India and caused the offsets in the structural features along the preexisting faults.  相似文献   

6.
The Bransfield Basin is a narrow and elongated active rift basin located between the Antarctic Peninsula and the South Shetland Islands. The Bransfield Basin is composed of three small basins, and two of them, the Central and Eastern Bransfield Basins, were surveyed during a recent cruise (GEBRA 93). The full swath bathymetry coverage as well as the single-channel seismic reflection and magnetic profiles that have been acquired, help us to better understand the morphostructure and recent evolution of the Bransfield Basin. Six large volcanic edifices aligned with the basin axis stick out of the sedimented seafloor of the Central Bransfield Basin. In contrast, the Eastern Bransfield Basin is characterised by four deep troughs displaying a rhombic-shape, and small, scattered volcanic cones located in the southwestern half basin. Seamount volcanism plays an important role in the formation of new crust in the Bransfield Basin. The larger seamounts of the Central Bransfield Basin are located at the intersection of the two main orthogonal sets of faults (longitudinal ENE-WSW and transversal NNW-SSE). Morphological analysis of the seamounts indicates a multi-staged volcano-tectonic construction. The distribution and shape of these edifices suggests that both volcanism and extension are concentrated at the same preferential areas through time. This might be related to the fracturation style of the continental crust. The Central and Eastern Bransfield Basins are very different in morphostructure, volcanism, and sedimentary cover. The Central Bransfield Basin shows evidence of NW-SE extensional faulting and focused active MORB-volcanism interpreted as result of incipient seafloor spreading. The Eastern Bransfield Basin is still in a rifting stage, mainly dominated by a NW-SE extension and some left-lateral strike-slip component probably related to the South Scotia Ridge.J. Acosta, J. Baraza, P. Bart, A.M. Calafat, J.L. Casamor, M. De Batist, G. Ercilla, G. Francés, E. Ramos, J.L. Sanz, and A. Tassone.  相似文献   

7.
By applying a kinematic and flexural model for the extensional deformation of the lithosphere, and using a recently available EROS Data Center topography DEM of Africa in conjunction with new and previous gravity data from Lakes Albert, Edward and George, we have determined the distribution, amplitude, and style of deformation responsible for the formation of the Albertine rift system, East Africa. Further, we have been able to approximate the three-dimensional architecture of the Albertine rift basin by analyzing a series of profiles across and along the rift system for which we also estimate the flexural strength of the rifted continental lithosphere and its along-strike variation. Previous modeling studies of the Lake Albert basin either overestimated the flexural strength of the extended lithosphere and/or underestimated the crustal extension. The single most important factor that compromised the success of these modeling efforts was the assumption that crustal extension was limited to the present-day distribution of the rift lakes. The style of deformation appears to have changed with time, beginning with a regionally distributed brittle deformation across the region that lead progressively to the preferential growth and development of the major border faults and antithetic/synthetic faults within the collapsed hangingwall block. Minor fault reactivation within the footwall block appears to be related to the release of bending stresses associated by the flexural uplift of the rift flank topography. By simultaneously matching the observed and modeled topography and free-air gravity across the Albertine rift system, we have determined a cumulative extension ranging from 6 to 16 km with the maximum extension occurring in the central and northern segments of the basin. Crustal extension is not constrained to the lake proper, but extends significantly to the east within the hangingwall block. Effective elastic thickness, Te, varies between 24 and 30 km and is unrelated to either the amount of extension or the maximum sediment thickness. The variation of Te relates possibly to small changes in crustal thickness, heterogeneities in crustal composition, and/or variations in radiogenic crustal heat production. Maximum sediment thickness is predicted to be 4.6 km and occurs within the central region of Lake Albert. Low bulk sediment densities, correlating with the location of major lake deltas, may be indicative of present-day sediment overpressures. Our results show that basin geometry is strongly dependent on the cumulative (and distribution) of lithospheric extension and the flexural rigidity of the lithosphere. Thus, in order to determine the total amount of extension responsible for the formation of a basin system, it is necessary to independently constrain the flexural strength of the lithosphere both during and after extension. Conversely, in order to determine the rigidity of extended lithosphere using the stratigraphy and/or geometry of rift basins and passive margins, it is necessary to independently constrain the cumulative extension of the lithosphere.  相似文献   

8.
The present-day basement depth of the seafloor in the absence of sediment loading was inferred along a traverse crossing the Southern Tyrrhenian Basin. A correction for sediment loading was proposed on the basis of density, seismic velocity and porosity data from selected deep boreholes. The empirical relation between sediment correction and seismic two-way travel time was extrapolated downward by applying the Nafe–Drake curve and a specific porosity–depth relation. The sediment loading response of the basement calculated for flexural isostasy is on average about one hundred meters lower than results for local isostasy. A pure lithosphere extensional model was then used to predict quantitatively the basement subsidence pattern on the margins of the basin. The basement depth is consistent with uniform extension model predictions only in some parts of the margins. The observed variability in the region of greatest thinning (transition from continental to oceanic crust) is attributable to the weakening effect caused by diffuse igneous intrusions. Subsidence of the volcanic Calabrian–Sicilian margin is partly accounted for by magmatic underplating. The comparison of the calculated subsidence with an oceanic lithosphere cooling model shows that subsidence is variable in some areas, particularly in the Marsili Basin. This argues for a typical back-arc origin for the Tyrrhenian Basin, as a result of subduction processes. By taking into account the geodynamic setting, stratigraphic data from the deepest hole and the terrestrial heat flow, we reconstructed the paleotemperatures of cover sediments. The results suggest that low temperatures generally have prevailed during sediment deposition and that the degree of maturation is expected not to be sufficient for oil generation processes.  相似文献   

9.
Rifting of the Qiongdongnan Basin was initiated in the Cenozoic above a pre-Cenozoic basement, which was overprinted by extensional tectonics and soon after the basin became part of the rifted passive continental margin of the South China Sea. We have integrated available grids of sedimentary horizons, wells, seismic reflection data, and the observed gravity field into the first crust-scale structural model of the Qiongdongnan Basin. Many characteristics of this model reflect the tectonostratigraphic history of the basin. The structure and isopach maps of the basin allow us to reconstruct the history of the basin comprising: (a) The sediments of central depression are about 10 km thicker than on the northern and southern sides; (b) The sediments in the western part of the basin are about 6 km thicker than that in the eastern part; (c) a dominant structural trend of gradually shifting depocentres from the Paleogene sequence (45–23.3 Ma) to the Neogene to Quaternary sequence (23.3 Ma–present) towards the west or southwest. The present-day configuration of the basin reveals that the Cenozoic sediments are thinner towards the east. By integrating several reflection seismic profiles, interval velocity and performing gravity modeling, we model the sub-sedimentary basement of the Qiongdongnan Basin. There are about 2–4 km thick high-velocity bodies horizontal extended for a about 40–70 km in the lower crust (v > 7.0 km/s) and most probably these are underplated to the lower stretched continental crust during the final rifting and early spreading phase. The crystalline continental crust spans from the weakly stretched domains (about 25 km thick) near the continental shelf to the extremely thinned domains (<2.8 km) in the central depression, representing the continental margin rifting process in the Qiongdongnan Basin. Our crust-scale structural model shows that the thinnest crystalline crust (<3 km) is found in the Changchang Sag located in the east of the basin, and the relatively thinner crystalline crust (<3.5 km) is in the Ledong Lingshui Sag in the west of the basin. The distribution of crustal extension factor β show that β in central depression is higher (>7.0), while that on northern and southern sides is lower (<3.0). This model can illuminate future numerical simulations, including the reconstruction of the evolutionary processes from the rifted basin to the passive margin and the evolution of the thermal field of the basin.  相似文献   

10.
We present previously unreported depth anomalies in the Arabian Basin, northwest Indian Ocean, to provide constraints on the evolution of the oceanic lithosphere of that basin. The depth anomaly reported in this study was calculated as the difference between the observed depth to oceanic basement (corrected for sediment load) and the calculated depth to oceanic basement of the same age. The results indicate an anomalous depth to basement of oceanic crust in the Arabian Basin in the age bracket of 63–42 Ma, suggesting that subsidence in this basin does not follow the age–depth relationship of normal oceanic crust. The depth anomalies in the basin vary from +501 to −905 m. A negative depth anomaly zone, mapped in the eastern part of the basin near the Laccadive Ridge, indicates that here the basement depth is shallower than predicted. By contrast, a positive depth anomaly zone, mapped in the western part of the basin, indicates a deeper basement depth than expected. We propose that the excess subsidence of basement of the western part of the basin is probably caused by a relatively cold mantle, compared to the nearby eastern part of the basin which is affected by the intense thermal field of the former Reunion hotspot. Here, the rise in oceanic basement is caused by the vertical upwelling of oceanic crust due to convection, followed by a lateral across-axis flow facilitated by the Reunion hotspot at the time of spreading in early Tertiary times. This interpretation is in good agreement with spreading-ridge propagation and ridge-hotspot interaction reported earlier for the basin.  相似文献   

11.
The coupled tectonic and depositional history of extensional basins is usually described in terms of stratigraphic sequences linked with the activity of normal faults. This depositional-kinematic interplay is less understood in basins bounded by major extensional detachments or normal fault systems associated with significant exhumation of footwalls. Of particular interest is the link between tectonics and sedimentation during the migration of normal faulting in time and space across the basin. One area where such coupled depositional-kinematic history can be optimally studied is the Late Oligocene - Miocene Sarajevo-Zenica Basin, located in the Dinarides Mountains of Bosnia and Herzegovina. This intra-montane basin recorded Oligocene – Pliocene sedimentation in an endemic and isolated lake environment. We use field kinematic and sedimentological mapping in outcrops correlated with existing local and regional studies to derive a high-resolution evolutionary model of the basin. The novel results demonstrate a close correlation between moments of normal faulting and high-order sedimentological cycles, while the overall extensional basin was filled by a largely uni-directional sediment supply from the neighbouring mountain chain. The migration in time and space of listric NE-dipping normal faults was associated with a gradual shift of the sedimentological environment. Transgressive-regressive cycles reflect sequential displacements on normal faults and their footwall exhumation, defining a new sedimentological model for such basins. This Early - Middle Miocene extension affected the central part of the Dinarides and was associated with the larger opening of the neighbouring Pannonian Basin. The extension was preceded and followed by two phases of contraction. The Oligocene - Early Miocene thrusting took place during the final stages of the Dinarides collision, while the post-Middle Miocene contraction is correlated with the regional indentation of the Adriatic continental unit. This latter phase inverted the extensional basin by reactivating the inherited basal listric detachment.  相似文献   

12.
This paper presents a structural and stratigraphic analysis of the foreland-fold-belt of the Eastern Venezuelan Basin and the main conclusions about shale tectonic mechanisms in the area. The deformation of the foreland-fold-belt has been investigated analyzing the growth strata architecture preserved on the structure fold limbs. Three contractional episodes are proposed for the Eastern Venezuelan Basin: 1) Oligocene to middle Miocene, 2) late Miocene to Pliocene and 3) Pleistocene. The first episode produced contractional listric faults inside the shale and long displacement blind thrusts in the underlying Cretaceous units. The second episode produced the deformation of the Cenozoic strata into overlapping east-west-trending, convex northward anticlines that covers more than 200 kilometers in length and 40 kilometers wide, break-through normal faults product of a high sedimentary load that overcomes contraction and the formation of short-displacement blind thrusts in the underlying Cretaceous units. The last episode is related to an oblique compression and the formation of high angle extensional faults with dextral movement and NW-SE strike. The role of the shale tectonics in the evolution implies that shale deforms in two stages: 1) folding and 2) normal faulting of the crest of the anticline (Break through normal faulting). Folding controlled the sediment distribution during most of the Neogene strata, while the normal faulting of the anticlines represent basin potential for hydrocarbon. The best potential hydrocarbon plays in the basin are related to oblique-collision restricted basins and controlled by break-through normal faults and the presence of NW-SE strike faults that connect the HC source with the reservoirs. Results from this research imply that the role of sedimentation is fundamental for the overburden sand distribution and tectonic constrain of the folds.  相似文献   

13.
The North Gabon coastal rift basins consist of a set of 130–150 long-segment asymmetrically tilted half grabens (Interior Basin) and 000–020 short-segment en échelon half grabens (N'Komi Basin) separated by 040–060 major transverse faults. Tectono-sedimentary analysis of field and subsurface data reveals the control exerted by extensional tectonism over continental sedimentation. During Berriasian to early Barremian times, uniform uniaxial 040–060 extension was responsible for the stretching of the brittle upper crust over a 100-km wide domain. During late Barremian–early Aptian times, the main locus of extension stepped westward resulting in severe end-rift uplift and erosion of the failed Interior and N'Komi rift basins. Early Cretaceous coastal rifts in North Gabon display a wide range of styles from oblique rifting (N'Komi Basin), normal rifting (Interior Basin) to transform rifting. The pre-existing Precambrian tectonic fabric exerts a strong control over the mode and over the 100–300 km-scale segmentation of the rifting.  相似文献   

14.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

15.
Quantitative tectonic modelling demonstrates an interaction of flexure of the lithosphere underlying the western Betics with crustal thinning in the Alboran Basin and flank uplift in the Internal Zone. In the eastern Betics the flexural response is overprinted by post-thrusting extensional events. Lateral variations in thermal structure and rheology of the lithosphere along strike of the Betics shed light on changes in tectonic configuration and are consistent with evidence for lateral variations in the mode of extension in the Alboran Basin. Flexural modelling and subsidence analysis of Neogene basins in the Internal Zone of the Betics, with spatial development controlled by contrasts in lithosphere rheology, demonstrate that at least two extensional events have affected the orogenic evolution of the Betics. The first event appears to reflect Oligocene-Early Miocene rifting observed throughout the Western Mediterranean. The second phase, which caused the present configuration of the Betics, corresponds to Tortonian-Recent extension centered in the Alboran Basin.  相似文献   

16.
The Baiyun Sag, situated at the north continental slope of the South China Sea, is a main sub-unit in the Southern Depression Belt of the Pearl River Mouth Basin. In this Sag, the middle Eocene Wenchang and upper Eocene–lower Oligocene Enping Formations had developed in the evolution stage of continental faulted basin. Seismic stratigraphic sequences and fault structures revealed that the Baiyun Sag was short of long-reaching boundary faults, and that it was a rifted basin greatly influenced by basement faults rather than a typical half-graben. Different from the sags in Northern Depression Belt of the Pearl River Mouth Basin which controlled by large-scale NEE-strike faults, the Baiyun Sag had been controlled by two groups of NWW-strike en echelon fault belts with approximate opposite dips, which developed in the southwest and northeast of this Sag respectively and had played the roles of boundary faults. These en echelon faults, together with narrow synclines, partial flower structures and fluid diapirs, indicated the left-lateral transtensional activities, which had resulted in subsidence center departing to main faults and stretching S-shaped. Moreover, the en echelon faults had constructed many composite transfer zones of relay ramps, and controlled the distribution of sandbodies. The en echelon fault belts are located in accordance with Nw-striking Mesozoic basement faults. Hence the left-lateral transtensional activities were responsible for the Western Pacific Plate subducting and strike slip reactivation of the basement faults. Significantly, NW-striking basement faults had forcefully determined the development of not only the Baiyun Sag but also the Xingning Sag.  相似文献   

17.
The Manus Basin in the eastern Bismarck Sea is a fastopening backarc basin behind the New Britain arc-trench system. Within the basin, motion between the Pacific and Bismarck plates about a pole located at 11° S, 145° E, occurs along three major leftlateral transform faults and a variety of extensional segments. We interpret SeaMARC II sidescan and other geophysical data to show that a Brunhes age plate reorganization created new extensional boundaries and a microplate between the NW-trending Willaumez, Djaul, and Weitin transforms. Two linked spreading segments formed in backarc basin crust between the Willaumez and Djaul transforms: the ESE-trending extensional transform zone (ETZ) in the west and the Manus spreading center (MSC) in the east. Positively magnetized crust on the MSC forms a wedge varying in width from 72 km at its southwest end to zero at its northeast tip, with corresponding Brunhes spreading rates varying from 92 mm/yr to zero. The MSC forms the northwestern boundary of the 100 km-scale Manus microplate and opens at 51°/m.y. about a pole near its apex at 3°02S, 150°32E. Opposite the MSC, bordering the arc margin of New Britain, the microplate is bound by a zone of broadly distributed strike slip motion, extension, and volcanism. Within this area, the Southern Rifts contain a series of grabens partially floored by lava flows. Left-lateral motion between the Pacific and Bismarck plates appears to drive the counterclockwise pivoting motion of the Manus microplate and the complementary wedge-like opening of the MSC and the Southern Rifts. The pivoting motion of the microplate has resulted in compressional areas along its NE and SW boundaries with the Pacific and Bismarck plates respectively. East of the microplate, between the Djaul and Weitin transforms and within the arc margin of New Ireland, another zone of broad extension referred to as the Southeast Rifts takes up opening in a pull-apart basin. There, en echelon volcanic ridges may be the precursors of spreading segments, but erupted lavas include calcalkaline volcanics. Kinematic modeling and marine geophysical observations indicate that the responses to similar amounts of extension in the eastern Manus Basin have varied as a function of the different types of pre-existing crust: arc crust tectonically stretched over a broad area whereas backarc crust underwent relatively little stretching before accommodating extension by seafloor spreading.  相似文献   

18.
The Fingerdjupet Subbasin in the southwestern Barents Sea sits in a key tectonic location between deep rifts in the west and more stable platform areas in the east. Its evolution is characterized by extensional reactivation of N-S and NNE-SSW faults with an older history of Late Permian and likely Carboniferous activity superimposed on Caledonian fabrics. Reactivations in the listric NNE-SSW Terningen Fault Complex accommodated a semi-regional rollover structure where the Fingerdjupet Subbasin developed in the hangingwall. In parallel, the Randi Fault Set developed from outer-arc extension and collapse of the rollover anticline.N-S to NNE-SSW faults and the presence of other fault trends indicate changes in the stress regime relating to tectonic activity in the North Atlantic and Arctic regions. A latest Triassic to Middle Jurassic extensional faulting event with E-W striking faults is linked to activity in the Hammerfest Basin. Cessation of extensional tectonics before the Late Jurassic in the Fingerdjupet Subbasin, however, suggests rifting became localized to the Hammerfest Basin. The Late Jurassic was a period of tectonic quiescence in the Fingerdjupet Subbasin before latest Jurassic to Hauterivian extensional faulting, which reactivated N-S and NNE-SSW faults. Barremian SE-prograding clinoforms filled the relief generated during this event before reaching the Bjarmeland Platform. High-angle NW-prograding clinoforms on the western Bjarmeland Platform are linked to Early Barremian uplift of the Loppa High. The Terningen Fault Complex and Randi Fault Set were again reactivated in the Aptian along with other major fault complexes in the SW Barents Sea, leading to subaerial exposure of local highs. This activity ceased by early Albian. Post-upper Albian strata were removed by late Cenozoic uplift and erosion, but later tectonic activity has both reactivated E-W and N-S/NNE-SSW faults and also established a NW-SE trend.  相似文献   

19.
The study presents the methodology used by the French Geological Survey (BRGM) for the building, reprocessing and interpretation of selected regional seismic lines in the Paris intracratonic basin (France): the 14 constructed E-W and N-S regional transects represent a total of 2,516 km length, and are based on the merge of 240 seismic single profiles recorded by petroleum operators between 1971 and 1995. The regional lines have been selected to cross the main oil fields of the Paris Basin, as well as high potential areas for oil exploration. A first difficulty was to recover the raw data necessary to build-up the regional transects. The signal reprocessing, harmonization and merge of the single seismic lines, constituent of the regional transects, are then described; these operations represent the cornerstone of the study. We put the emphasis on the primary static corrections, as the targeted structures are commonly spatially associated with large seismic velocity variations in the upper Cretaceous chalk and Tertiary sedimentary cover.The interpreted regional transects definitely give complementary information to the existing studies, which generally lack seismic (and therefore structural) data: we give an overview of the main structural and geometrical features of the Paris Basin: inversion structures, major unconformities, as well as Permo-Carboniferous basins. We also describe the structural pattern, and show the close relationships between the faults geometry, the faults density, and the geological evolution of the Paris Basin: we distinguish (1) few large-scale polyphase faults, with a Variscan origin, representing the first order structural frame of the Paris Basin; (2) monophase normal faults, with strike-slip features, representing the subsurface prolongation of Cenozoic grabens cropping out in the neighbourhood; (3) deep normal faults, sealed by the base Calcareous Dogger sequence, related to the Permo-Liassic extensional tectonic regime. This large-scale view of the Paris Basin has highlighted several potential exploration targets.  相似文献   

20.
We present a detailed stratigraphic and structural study of the Kopeh Dagh fold-and-thrust belt in NE Iran, which is an investigation of the complex polyphased tectonic history of this belt and its links with the adjacent South Caspian Sea and Amu Darya basins. Based on numerous field surveys, a large amount of 2D and 3D seismic data, borehole data and more than 150 new biostratigaphic datings, a new detailed biostratigraphic chart and 4 main regional cross-sections illustrate the importance of lateral facies variations and structural inheritance in the present-day structure of the belt.After the Cimmerian orogeny corresponding to the closure of the Paleotethys Ocean in Late Triassic/Early Jurassic times, a Middle Jurassic post-collisional rifting event was associated with the deposition of one of the main source rocks of the Kopeh Dagh and the Amu Darya Basin (Kashafrud Formation). Following this rifting event, over 7 km of sediments were accumulated until the Tertiary above a regional post-Triassic unconformity. The occurrence of local uplifts during the Late Cretaceous-Early Paleocene is interpreted as a consequence of regional-scale modification of plate-slab coupling in the Neotethys subduction zone. The main inversion of the Kopeh Dagh occurred at Late Eocene times, when the far-field deformation developed in Eurasia as a consequence of the locking of the Neo-Tethys subduction. This folding phase is sealed in the western part of the belt by a major Eocene-Oligocene unconformity at the base of the thick sedimentary series belonging to the South Caspian Sea Basin. The bulk of sedimentary infill in the South Caspian Sea Basin is Oligocene and younger, and it is probably related to syn-compressional downward flexure of the resistant basement basin at the onset of the Alpine phase. In the eastern part of the Kopeh Dagh, this deformation is characterized by Middle Jurassic graben inversion with evidence of forced folding, short-cuts and as well by larger scale basement uplifts. In contrast, the northwestern part of the belt shows thrust faults involving basement and fault-propagation folds within the sedimentary sequence. The Kopeh Dagh presents tectonic structures that are parallel to the Paleotethys suture zone, which emphasizes the importance of the structural inheritance and inversion processes during the structural evolution of the belt. Finally, a change from a mostly dip-slip to a mostly strike-slip tectonics occurred during the Pliocene within the Kopeh Dagh as a consequence of a major tectonic reorganization in North-East Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号