首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated geophysical methods involving magnetic and dipole–dipole resistivity (DDR) were conducted across a prominent zone of weakness clearly observable in Landsat MSS and SLAR images in the Precambrian basement complex of southwestern Nigeria. Up till now, the location and existence of this megascopic structure have not been confirmed using geophysical methods. With the objective of delineating this weak zone and its structural attributes, three traverses were established at 500 m intervals across it, and geophysical measurements were made at 10 m intervals along these traverses. Qualitative interpretation of the magnetic data obtained shows a diagnostic signature of a near-vertical fault, trending along a NNE–SSW direction. Also, the quantitative interpretation of the data using the non-linear least-squares regression technique indicates that the width of the magnetic anomaly ranges from 90 to 150 m, its dip angle varies between 75° and 85°; the anomaly is concealed by a regolith of approximately 15 m thickness. Furthermore, a 2D resistivity inversion of the field resistivity data reveals a three-layer model, representing thin resistive topsoil underlain by weathered bedrock, resistive bedrock with a distinct low resistivity zone located within the bedrock. The most plausible explanation for this low resistivity zone is that it was formed by shearing activities during Late Precambrian times. Conclusively, the integrated approach employed in this research confirms the existence of the supposed Ifewara shear zone (ISZ).  相似文献   

2.
Geological and geophysical interpretation of TEM data has revealed changes to the subsurface from the “Kraton-3” peaceful underground nuclear explosion (PUNE). The explosion was conducted on 24 August 1978 at a depth of 577 m in Middle Cambrian limestone on the eastern periphery of the Tunguska basin (Western Yakutia). The site is located in an area of 100 to 300 m thick permafrost and pressurized aquifers with Na-Ca-Cl brines (up to 400 g/l TDS) and cryopegs. The “Kraton-3” epicenter is only 160 m away from a fault emerging along the Markha River.TEM responses collected at 22 stations along three profiles image a layered-earth background resistivity pattern. The highly resistive uppermost layer, ~ 150–200 m thick, consists of perennially frozen ice-rich rocks. Dry permafrost on watersheds of the Markha right side reaches 1200 ohm?m, while the hypsometrically lower frozen ground along the fault is 10 to 40 times less resistive. That is exactly the place of the PUNE epicenter, and the resistivity lows may record permafrost degradation and taliks (unfrozen layers).The layers below are conductive and correspond to Upper Cambrian and Middle Cambrian (I) aquifers with brines. The top of the Upper Cambrian aquifer along the central profile is highly variable in depth, especially along the fault on the river left bank. The data indicate a local groundwater anomaly above the explosion: the Middle Cambrian I brines, which show up as a conductor in the resistivity pattern, become ~ 300 m shallower, most likely rising along the rubble chimney above the UNE containment cavity; the lateral extent of the anomaly reaches 400 m. There may exist paths for mass and heat transport maintained by pressurized brines in the system “containment cavity–rubble chimney–fault zone–ground surface”.  相似文献   

3.
Integrated surface electrical resistivity and electromagnetic (EM) surveys were conducted in a hard-rock terrain of Southwestern Nigeria in the vicinity of active oxidation sewage treatment ponds. The aim was to detect soil contamination due to the spread of sewage effluent, locate possible leachate plumes and conductive lithologic layers, and access the risk of groundwater pollution in the vicinity of the sewage-ponds. Dipole–dipole resistivity profiling and very low frequency (VLF) data were acquired at 10-m intervals along five 200-m long east-west geophysical traverses. Resistivity sections obtained revealed four subsurface geologic layers comprised of lateritic clay, clayey sand/sand, weathered/fractured bedrock, and competent bedrock. A distinct low resistivity zone corresponding to the contamination plume (labeled B) was delineated from all the resistivity sections. This low zone extends into the weathered bedrock and possibly suggests contamination of this layer. The filtered real component of the processed VLF data detected three distinct anomaly zones that are representative of fractured zones filled with conductive fluids and/or lithologic boundaries that possibly serve as conduits for the movement of contaminated effluents. The results obtained from the two methods suggest possible contamination of the subsurface soil layers and groundwater in the vicinity of the sewage-ponds. The existence of this contaminated plume poses a serious threat to the ecosystem and health of the people living in the vicinity of the sewage-ponds.  相似文献   

4.
Magnetotelluric studies over the igneous arc of the Indo Burman range in the Sagaing province of Myanmar have delineated the high resistivity Indian plate subducting westwards beneath the Burmese block to depths of 30 km and beyond. The thick moderately resistive (20–100 Ω m) layer overlying the subducting Indian plate may be due to the low resistivity sediments. The entire region is covered with prominent sedimentary layer with a conductance varying between 20 and 3000 S showing a general increase from the east to west, suggesting that their thickness increases toward the west. The large unsystematic variations in the conductance are indicative of the widely varying depositional environments and also possible vertical block movements during the course of their deposition. A west dipping low resistivity zone to the east of Burmese block seems to demarcate its eastern limit, suggesting the possibility of a hitherto unknown deep seated fault, which is also supported by the several earthquake foci located over this zone. The nature of the crustal movements over this fault is not immediately apparent. Possibility exists that the Sagaing fault is an en echelon fault and the present feature observed here is a part of this en echelon fault. The possibility of channel flows of the weakened rocks in the deep crust observed in the vicinity of the eastern Himalayan syntaxis may also cause such low resistivity zones.  相似文献   

5.
Beach-rock exposures provide a record of Holocene sea-level rise along the 560-km-long northeast-facing coast of Ceará, Brazil, that differs from the record available along the other 4300 km of Brazilian coastline further south. Whereas documentation is available from southern Brazil to show Holocene sea levels as much as 5 m above today's level, our observations along the northeastern coast indicate that sea level here was not above the present-day level during the Holocene. Near Jericoacoara, about 240 km northwest of Fortaleza, characterized by strong surf, Precambrian rocks crop out from under a temporary cover of sand in small protected locations with less surf. Here in this upper tidal zone beach rock is being formed, while it is being dismembered synchronously by erosion at lower tide levels. This shows a rising sea level. Along the entire coast of Ceará west of Ponta Grossa the absence of beach rock higher than spring tide level indicates that sea-level was not above its present-day level during the Holocene.Notches in bedrock situated between 2 m and 6 m above spring-tide high-water level that we formerly described as Holocene, are now believed to be Sangamonian.  相似文献   

6.
The paper describes the results of magnetotelluric sounding (MTS) carried out in the Zeya block of the Stanovoi megablock, in the area of its junction with the Aldan Shield. The border between them runs along the Stanovoi fault. Based on the results of interpretation of MTS curves and the gravity, magnetic, and geological data, geological/geophysical sections have been constructed to a depth of 7 km along two ~ 20 km long profiles running across the Stanovoi fault. About 1 km thick and approximately 2 km long conductivity zone has been distinguished beneath the Okonon plateau of Quaternary basalts with electrical resistivity of < 100 Ohmm. This anomaly is associated with ore mineralization in Early Proterozoic gabbro intrusion. A 3D density modeling was performed. High-density bodies of NW strike dip to the northeast to a depth of 25 km in the area of the Okonon basalt plateau.?Corresponding author.  相似文献   

7.
A correlative study of two mutually independent geophysical properties like magnetic susceptibility variations and shear wave velocity structure of the crust has been carried out in a part of the Eastern Dharwar Craton of Indian peninsular shield. Analysis of the aeromagnetic anomaly field over an area of 35,000 km2 comprising the peninsular gneissic basement complex and a part of Cuddapah Basin has resulted in identification of two distinct magnetic horizons: one at a depth of 2 km and the other at a depth of 12 km. Correlation of these results with the inferences made by the inversion of Rayleigh wave phase velocity and other geophysical studies has confirmed the presence of a crustal layer at a depth of 12 km. This horizon has been inferred to be the depth to the lower boundary of the upper crust in this region.  相似文献   

8.
《Precambrian Research》2006,144(3-4):261-277
The English River Subprovince is a prominent belt of metasedimentary rocks in the Archean Western Superior Province. The structure of its western half was investigated by using techniques of enhancement and automatic interpretation of magnetic data, and integration of magnetic-derived information with seismic and gravity data. The results indicate that a suite of exposed felsic plutons that intruded the belt at ca. 2698 Ma extends under most of the metasedimentary rocks that are exposed at the surface. The thickness of the metasedimentary rocks is interpreted to be less than 1 km in areas where it is underlain by the members of this intrusive suite. In other areas, the metasedimentary rocks attain thicknesses of 3–4 km and appear to be underlain by rocks similar to the gneissic rocks that are exposed in the adjacent metaplutonic Winnipeg River Subprovince. The integration of enhanced magnetic data with gravity data indicates that the large gravity anomaly that extends along the English River belt correlates well spatially and morphologically with the extensive suite of felsic intrusions that underlies the belt, suggesting that the crustal component of the gravity anomaly is related to this suite of intrusions. We interpret the source of the gravity anomaly as a dense unit comprising anhydrous mineral assemblages that formed within these felsic intrusions in response to low-pressure, high-temperature metamorphism that affected the belt at ca. 2691 Ma. On the basis of geochronological, geological and geophysical constraints, we propose that this metamorphic episode is linked to the continuation of magmatism at depth after the emplacement of the ca. 2698 Ma felsic plutons, being ultimately related to the advection of mantle heat into the crust during a period of regional extension.  相似文献   

9.
Dredging and widening of the Panama Canal is currently being conducted to allow larger vessels to transit to and from the Americas, Asia, and Europe. Dredging efficiency relies heavily on knowledge of the types and volumes of sediments and rocks beneath the waterway to ensure the right equipment is used for their removal. To aid this process, a waterborne streaming electrical resistivity survey was conducted along the entire length of the canal to provide information on its geology. Within the confines of the canal, a total of 663 line-kilometers of electrical resistivity data were acquired using the dipole–dipole array. The support of the survey data for dredging activities was realized by calibrating and qualitatively correlating the resistivity data with information obtained from nearby logged boreholes and geological maps.The continuity of specific strata was determined in the resistivity sections by evaluating the continuity of similar ranges of resistivity values between boreholes. It was evident that differing geological units and successions can have similar ranges of resistivity values. For example, Quaternary sandy and gravelly alluvial fill from the former river channel of the Chagres River had similar resistivity ranges (generally from 40 to 250 Ω m) to those characteristic of late Miocene basalt dikes (from 100 to 400 Ω m), but for quite different reasons. Similarly, competent marine-based sedimentary rocks of the Caimito Formation were similar in resistivity values (ranging from 0.7 to 10 Ω m) to sandstone conglomerate of the Bohio Formation. Consequently, it would be difficult to use the resistivity data alone to extrapolate more complex geotechnical parameters, such as the hardness or strength of the substrate. A necessary component for such analyses requires detailed objective information regarding the specific context from which the geotechnical parameters were derived. If these data from cored boreholes and detailed geological surveys are taken into account, however, then waterborne streaming resistivity surveying can be a powerful tool. In this case, it provided inexpensive and highly resolved quantitative information on the potential volume of loose suctionable material along the Gamboa Sub-reach, which could enable large cost savings to be made on a major engineering project involving modification of one of the most important navigable waterways in the world.  相似文献   

10.
We consider a series of hydrogeophysical techniques that provide a multiscale investigation of the water content in the vadose zone and of the perched aquifer at the experimental site of “La Soutte” in the Vosges Mountains (France). It is located in a catchment area where several springs and streams occur along fractured volcanic and weathered plutonic rocks. The site is the object of a long-term study that uses both continuous and repeated measurements to monitor hydrogeological processes. The main results from AMT and DC resistivity techniques allow the determination of a high-resolution 3D resistivity model over a large range of depths (from 100 to 103 m). We discuss their use and propose a hydrogeological model (porosity, water conductivity and water content). We also use MRS and GPR for a detailed investigation of the shallow part of the catchment that consists of soil and weathered rocks of highly varying thickness (0 to 15 m). MRS is used to map the thickness and total water volume content by unit surface of the saturated weathered zone. It also yields estimates of the vadose zone thickness through the depth to the top of the saturated zone. Moreover, we show results from GPR CMP measurements that yield estimates of the water content and porosity in the shallowest layer (0–30 cm) by simple interpretation of the ground direct wave.  相似文献   

11.
Beldih mine at the central part of the South Purulia Shear Zone (SPSZ) has been reported with low grade uranium-bearing formation within quartz-magnetite-apatite host in kaolinized formation. Therefore, the present integrated geophysical study with gravity, magnetic, radiometric, very low frequency electromagnetic (VLF) and gradient resistivity profiling methods around the known mineralized zones aimed at identifying the exact geophysical signatures and lateral extent of these uranium mineralization bands. The closely spaced gravity-magnetic contours over the low to high anomaly transition zones of Bouguer, reduced-to-pole magnetic, and trend surface separated residual gravity-magnetic anomaly maps indicate the possibility of high altered zone(s) along NW-SE direction at the central part of the study area. High current density plots of VLF method and the low resistive zones in gradient resistivity study depict the coincidence with low gravity, moderately high magnetic and low resistivity anomalies at the same locations. Moderate high radioactive zones have also been observed over these locations. This also suggests the existence of radioactive mineralization over this region. Along profile P2, drilled borehole data revealed the presence of uranium mineralization at a depth of ~100 m. The vertical projection of this mineralization band also identified as low gravity, low resistivity and high magnetic anomaly zone. Thus, the application of integrated geophysical techniques supported by geological information successfully recognized the nature of geophysical signatures associated with the uranium mineralization of this region. This enhances the scope of further integrated geophysical investigations in the unexplored regions of SPSZ.  相似文献   

12.
Gravity and magnetic analysis provide an opportunity to deduce and understand to a large extent the stratigraphy, structure and shape of the substructure. Euler deconvolution is a useful tool for providing estimates of the localities and depth of magnetic and gravity sources. Wavelet analysis is an interesting tool for filtering and improving geophysical data. The application of these two methods to gravity and magnetic data of the Liberia Basin enable the definition of the geometry and depth of the subsurface geologic structures. The study reveals the basin is sub-divided and the depth to basement of the basin structure ranges from about 5 km at its North West end to 10 km at its broadest section eastward. Magnetic data analysis indicates shallow intrusives ranging from a depth of 0.09 km to 0.42 km with an average depth of 0.25 km along the margin. Other intrusives can be found at average depths of 0.6 km and 1.7 km respectively within the confines of the basin. An analysis of the gravity data indicated deep faults intersecting the transform zone.  相似文献   

13.
With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forêts in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.  相似文献   

14.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

15.
A combination of double couple (DC) and non-double couple (non-DC) earthquakes hit Eastern Turkey, in the vicinity of Lake Van, in October–November 2011. Teleseismic waveform inversion was used to find the best fitting double couple and deviatoric moment tensors on four large and medium sized events of this sequence. The aftershocks of the Mw = 7.1, 2011/10/23:10:41 earthquake built a NE–SW aftershock zone where the Mw = 5.7, 2011/10/25 aftershock was located. The Mw = 6.0, 2011/10/23:20:45 event was located around the terminal section of the Mw = 7.1 aftershock zone which might be triggered by this event (aftershocks of this event propagated from W to E to build a W–E aftershock zone where the Mw = 5.7, 2011/11/09 event was located). For these events the calculated best fitting grid search parameters are not very different from GCMT results, but DC components, after deviatoric moment tensor inversion, represent much more difference with GCMT and grid search. The important feature of deviatoric moment tensor inversion is the existence of a notable compensated linear vector dipole (CLVD) component on the Mw = 5.7, 2011/10/25:14:55 and Mw = 5.7, 2011/11/09:19:23 aftershocks. According to the regional seismotectonics, these CLVD components could be related to crustal rheology and volcanic activities. Based on the results, the existence of a cylindrical aftershock distribution could be taken as an indication of induced seismic activity on complex-ring structures resulted from magma or water–magma injection. However, the existence of Karst like structures suggests that the CLVD components may be under the influence of high-pressure water or gas injection rather than magma.  相似文献   

16.
Rapid weathering and erosion rates in mountainous tropical watersheds lead to highly variable soil and saprolite thicknesses which in turn impact nutrient fluxes and biological populations. In the Luquillo Mountains of Puerto Rico, a 5-m thick saprolite contains high microorganism densities at the surface and at depth overlying bedrock. We test the hypotheses that the organisms at depth are limited by the availability of two nutrients, P and Fe. Many tropical soils are P-limited, rather than N-limited, and dissolution of apatite is the dominant source of P. We document patterns of apatite weathering and of bioavailable Fe derived from the weathering of primary minerals hornblende and biotite in cores augered to 7.5 m on a ridgetop as compared to spheroidally weathering bedrock sampled in a nearby roadcut.Iron isotopic compositions of 0.5 N HCl extracts of soil and saprolite range from about δ56Fe = 0 to ? 0.1‰ throughout the saprolite except at the surface and at 5 m depth where δ56Fe = ? 0.26 to ? 0.64‰. The enrichment of light isotopes in HCl-extractable Fe in the soil and at the saprolite–bedrock interface is consistent with active Fe cycling and consistent with the locations of high cell densities and Fe(II)-oxidizing bacteria, identified previously. To evaluate the potential P-limitation of Fe-cycling bacteria in the profile, solid-state concentrations of P were measured as a function of depth in the soil, saprolite, and weathering bedrock. Weathering apatite crystals were examined in thin sections and an apatite dissolution rate of 6.8 × 10? 14 mol m? 2 s? 1 was calculated. While surface communities depend on recycled nutrients and atmospheric inputs, deep communities survive primarily on nutrients released by the weathering bedrock and thus are tightly coupled to processes related to saprolite formation including mineral weathering. While low available P may limit microbial activity within the middle saprolite, fluxes of P from apatite weathering should be sufficient to support robust growth of microorganisms in the deep saprolite.  相似文献   

17.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

18.
The Albany-Fraser Orogen (AFO), southeast Western Australia, is an underexplored, deeply weathered regolith-dominated terrain that has undergone complex weathering associated with various superimposed climatic events. For effective geochemical exploration in the AFO, integrating landscape evolution with mineralogical and geochemical variations of regolith and bedrock provides fundamental understanding of mechanical and hydromorphic dispersion of ore and pathfinder elements associated with the different weathering processes.In the Neale tenement, northeast of the AFO, a residual weathering profile that is 20-55 m thick was developed under warm and humid climatic conditions over undulating Proterozoic sheared granitoids, gneisses, schists and Au-bearing mafic rocks. From the base, the typical weathering profile consists of saprock, lower ferruginous saprolite, upper kaolinitic saprolite and discontinuous silcrete duricrust or its laterally coeval lateritic residuum. These types of duricrusts change laterally into areas of poorly-cemented kaolinitic grits or loose lateritic pisoliths and nodules.Lateritic residuum probably formed on remnant plateaus and was transported mechanically under arid climatic conditions over short distances, filling valleys to the southeast. Erosion of lateritic residuum exposes the underlying saprolite and, together with dilution by aeolian sands, constitutes the transported overburden (2-25 m thick). The reworked lateritic materials cover the preserved silcrete duricrusts in valleys. The lower ferruginous saprolite and lateritic residuum are well developed over mafic and sulphide-bearing bedrocks, where weathering of ferromagnesian minerals and sulphides led to enrichment of Fe, Cu, Ni, Cr, Co, V and Zn in these units. Kaolinitic saprolite and the overlying pedogenic silcrete are best developed over alkali granites and quartzofeldspathic gneisses, which are barren in Au and transition elements, and enriched in silica, alumina, rare earth and high field strength elements.A residual Au anomaly is formed in the lower ferruginous saprolite above a Au -bearing mafic intrusion at the Hercules prospect, south of the Neale tenement, without any expression in the overlying soil (< 20 cm). Conversely, a Au anomaly is recorded in the transported cover, particularly in the uppermost 3 m at the Atlantis prospect, 5 km southwest of the Hercules prospect. No anomalies have been detected in soils using five different size fractions (> 2,000 μm, 2,000-250 μm, 250-53 μm, 53-2 μm and < 2 μm). Therefore, soil cannot be efficiently applied as a reliable sampling medium to target mineralization at the Neale tenement. This is because mechanical weathering was interrupted by seasonal periods of intensive leaching under the present-day surface conditions and/or dilution by recently deposited aeolian sediments which obscure any signature of a potential Au anomaly in soils. Therefore, surface soil sampling should extend deeper than 20 cm to avoid dilution by aeolian sands and seasonal leaching processes. Regolith mapping and the distinction between the residual and transported weathering products are extremely significant to follow the distal or proximal mineralization.  相似文献   

19.
In the Ribeira belt, southeastern Brazil, the Precambrian mylonitic fabric mainly formed during the Brasiliano/Pan-African orogeny (640–480 Ma) and was reactivated as fault zones in the Cretaceous and Cenozoic. The reactivation process led to the development of the System of Continental Rifts of southeastern Brazil, from the Paleogene to the Quaternary. We investigated the brittle reactivation of a mylonitic zone, which is part of a major mylonitic belt, Arcádia-Areal. We used geological and geomorphological mapping, resistivity survey, controlled source audiomagnetotelluric survey, and luminescence dating. Our results indicate that this shear zone was reactivated and formed a 15 km long and 2 km wide sedimentary-filled trough, the Rio Santana Graben. It is located on the northwest border of a major structure, the Guanabara Graben, in the State of Rio de Janeiro. The Rio Santana Graben forms an almost entirely fault-bounded, NE-elongated depression that was accommodated entirely within the Arcádia-Areal shear zone. The graben consists of two main depocenters separated by a relay ramp. The graben formed by means of multistage activity of several faults during at least two main periods. The first period formed silicified fault breccia and occurred during alkaline magmatism in the Paleogene. The second formed fault breccia and gouge in shallow conditions and occurred at least until the Quaternary. The NE-trending and NW-dipping Precambrian fabric was reactivated as dip-slip and strike-slip faults. These faults triggered clastic-sediment deposition at least 300 m thick. The upper part of the graben consists of Quaternary alluvial and colluvial sediment fill, which yielded maximum luminescence deposition ages from 49 to 13 ka in the center of the trough. An organic layer at the top of the Quaternary alluvial deposits yielded 14C ages at ~6000 years BP. The lower part of the graben may be composed of Paleogene to Neogene sedimentary deposits, which occur in other basins of the System of Continental Rifts of southeastern Brazil. We conclude that the Rio Santana Graben is an example of the direct control of a preexisting continental-scale rheological boundary on the geometry and location of fault systems and sediment deposition. Quaternary fault reactivation of the preexisting fabrics represents only the latest movement of a major structure.  相似文献   

20.
The genetic evolution of three types of reworked manganese ore bodies namely: Detrital, Concretionary (Mangcrete) and Wad in the Precambrian Iron Ore Group occurring in Bonai-Keonjahr belt, Singhbhum Craton, India are reported. All the reworked Mn-ore bodies are developed in a restricted area and have a limited resource. Mangcrete and wad are commonly exposed at the surface and extend to a maximum depth of 10 m while detrital ores are observed below 10–20 m from the surface.Detrital ore bodies occur as large boulders and are buried under a thick zone of laterite. Mangcrete is concretionary in nature; oolitic, spherulitic and nodular in shape. Broken fragmented of ooloids and pisoloids, often observed in mangcrete, are indications of reworking. Wad exposures are noticed above low to medium-grade bedded manganese ore bodies. Among three reworked ore types, the detrital is of low to medium-grade having Mn:Fe ratio > 5, while wad and mangcrete are of sub-grade (Mn:Fe ~ 1) and off-grade type (Mn:Fe < 1) respectively.Detrital ore bodies are of allochthonous nature and developed through several stages such as fragmentation of pre-existing ore, leaching and cementation followed by transportation and deep burial. Mangcrete represent chemogenic precipitates at several stages of contemporary Mn-Fe-Al rich fluid under supergene environment. Wad is of bio-chemogenic origin and developed in a swampy region under marine environment due to slow chemical precipitation of Mn-Fe enriched fluid, in several stages nucleating quartz/hematite/cryptomelane detritals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号