首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field instrumentation was designed and installed to quantify the influence of forest interception on the spatial and temporal distribution of water flux onto and into the forest soil at the plot scale. An application is presented which demonstrates that the instrumentation has the required resolution to monitor the spatial variability and dynamics of the flux processes. The observations show that spatial variability of interception may play an important role, not only in small scale soil moisture heterogeneity, but also in the hydrological response of a forested catchment at the hillslope scale. They also highlight the need of gathering more field information on the effects of vegetation on the spatial variability of soil surface water input.  相似文献   

2.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   

4.
In ecosystem research great effort is made in measuring soil water tension, because this is a critical calibration variable for modelling soil water fluxes. In this paper the spatial heterogeneity and temporal dynamics of soil tensions and their consequences for the determination of water fluxes are investigated. Studies were carried out at a Norway spruce stand in the Fichtelgebirge (NE Bavaria). Standard tensiometers were installed at three soil depths (20 each) on the whole experimental plot, as well as 45 microtensiometers as a dense grid in a small soil pit. Microtensiometry at the centimetre scale showed that, depending on rain intensity and initial soil water tension, even a soil without discernible macrostructure may show preferential water infiltration. At the stand scale the variability of soil hydraulic properties and tree root distribution causes substantial heterogeneity of soil water tension, as observed by standard tensiometers. A functional relationship between increasing spatial heterogeneity of tensiometer readings and increasing soil water tension was found, which was particularly pronounced after longer dry periods. Also at low soil water tension, where spatial heterogeneity was low, the calculation of water fluxes from tensiometer values was critical, owing to the fact that small differences in measuring soil water tension resulted in big differences in calculated water fluxes. At high soil water tension in summer the spatial heterogeneity of tensiometer readings was extremely high. At our experimental site, since 30% of the total rain in summer falls in events having a precipitation rate greater than 5 mm h−1, preferential water and solute flow was an important phenomenon. We conclude that the validation of calculated water fluxes using measured soil water tension at the stand scale is not an appropriate tool, because of measurement difficulties, considerable spatial heterogeneity, especially in dry periods, and the great variability of soil hydraulic properties. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Human-induced afforestation has been one of the main policies for environmental management of farmland abandonment in Mediterranean areas. Over the last decades, several studies have reviewed the impact of afforestation activities on geomorphological and hydrological responses and soil properties, although few studies have evaluated the effects on water table dynamics. In parallel to human-induced afforestation activities, natural revegetation occurred in abandoned fields and in fields where the intensity of human activity declined, driving the expansion of shrubs. This research addresses the spatial and temporal variability of water table dynamics in a small afforested sub-catchment located in the Central Spanish Pyrenees. Differences between afforestation (Pinus nigra and Pinus sylvestris) and natural plant colonization (shrubs, mainly Genista scorpius, Buxus sempervirens, and Juniperus communis) and early abandoned meadows (G. scorpius), are analysed in terms of runoff generation and seasonal water table depth dynamics. Precipitation, runoff and water table datasets recorded for the 2014–2019 period are used. Results show a high temporal and spatial variability with large fluctuations in discharge and water table. Groundwater dynamics varied markedly over the year, identifying a wet and dry period with different responses suggesting different runoff generation processes (Hortonian flow during dry and wet periods, and saturation excess runoff during wet conditions). Furthermore, important differences are noted among the various land cover types: (i) in the natural revegetation area (shrubland and meadows) a marked seasonal cycle was observed with short saturation periods during winter and spring; and (ii) in the afforestation areas, the water table dynamics showed a seasonal cycle with a high variability, with fast responses and rapid oscillations. Likewise, the relationship between the depth of water table and hydrological variables was not straightforward, suggesting complex hydrological behaviour.  相似文献   

6.
High surface water-groundwater connectivity characterizes watersheds underlain by karsts, increasing contaminant transport risks. However, karsts are highly complex, making research necessary to understand the transport of contaminants from the surface, through the aquifer, to discharge areas. In Yucatan, the lack of waste water treatment raises the risk of groundwater contamination. We monitored stable isotopes (δ18O-NO3 and δ15N-NO3), cadmium, and lead to document waste water contamination and transport during the rainy and dry seasons, using water samples collected along the Ring of Cenotes during each season. Specific conductance and pH showed no consistent seasonality, with conductance ranging from 0.5 to 55 mS/cm and pH ranging from 6.6 to 8.6 for most samples. Nitrate concentrations in the cenotes averaged 205 ± 260 μM and no seasonal pattern was observed. Cd and Pb concentrations were 0.1 to 37.9 μg/L and 0.2 to 243.2 μg/L, respectively. Nitrate stable isotope values were 2.6 to 27.2‰ for δ18O and 1.2 to 20.7‰ for δ15N. The statistical relationship between δ15N and δ18O, in dry season samples, indicated that denitrification was occurring. A scale measure for waste water recognition showed: (1) high variability among sites probably related with dry/rainy seasons and/or diverse anthropogenic activities; and (2) specific water quality variables that contribute to contamination at each site during each season. Importantly, our analyses indicate that in the area surrounding the Ring of Cenotes, waste water exhibits spatial and temporal patterns related to complex transport and dilution processes, as is the case in karsts in general.  相似文献   

7.
Water resources are the most critical factors to ecology and society in arid basins, such as Kaidu River basin. Isotope technique was convenient to trace this process and reveal the influence from the environment. In this paper, we try to investigate the temporal and spatial characteristics in stable isotope (18O and 2H) of surface water and groundwater in Kaidu River. Through the water stable isotope composition measurement, spatial and temporal characteristics of deuterium (δ2H) and oxygen 18 (δ18O) were analysed. It is revealed that (1) comparing the stream water line with the groundwater line and local meteorological water line of Urumqi City, it is found that the contribution of precipitation to surface water in stream runoff is the main source, whereas the surface water is the main source of groundwater. Groundwater is mainly drainage of surface runoff in the river; (2) in the main stream of Kaidu River, the spatial variability of river water showed a ‘heavier‐lighter‐heavier’ change along with the main stream for δ18O, and temporal variability showed higher in summer and lower in winter; (3) the δ18O and δ2H values of groundwater samples ranged from ?11.36 to ?7.97‰ and ?73.45 to ?60.05‰, respectively. There is an increasing trend of isotopic values along the groundwater flow path. The seasonal fluctuation of δ18O is not clear in most samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Spatially distributed hydrometeorological and plant information within the mountainous tropical Panama Canal watershed is used to estimate parameters of the Penman–Monteith evapotranspiration formulation. Hydrometeorological data from a few surface climate stations located at low elevations in the watershed are complemented by (a) typical wet‐ and dry‐season fields of temperature, wind, water vapour and pressure produced by a mesoscale atmospheric model with a 3 × 3 km2 spatial and hourly temporal resolution, and (b) leaf area index fields estimated over the watershed during a few years using satellite data with two different spatial and temporal resolutions. The mesoscale model estimates of spatially distributed surface hydrometeorological variables provide the basis for the extrapolation of the surface climate station data to produce input for the Penman–Monteith equation. The satellite information and existing digital spatial databases of land use and land cover form the basis for the estimation of Penman–Monteith spatially distributed parameter values. Spatially distributed 3 × 3 km2 potential evapotranspiration estimates are obtained for the 3300 km2 Panama Canal watershed. Estimates for Gatun Lake within the watershed are found to reproduce well the monthly and annual lake evaporation obtained from submerged pans. Sensitivity analysis results of potential evapotranspiration estimates with respect to cloud cover, dew formation, leaf area index distribution and mesoscale model estimates of surface climate are presented and discussed. The main conclusion is that even the limited spatially distributed hydrometeorological and plant information used in this study contributes significantly toward explaining the substantial spatial variability of potential evapotranspiration in the watershed. These results also allow the determination of key locations within the watershed where additional surface stations may be profitably placed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A first-order moment analysis method is introduced to evaluate the pore-water pressure variability within a hillslope due to spatial variability in saturated hydraulic conductivity (Ks) during rainfall. The influences of the variance of the natural logarithm of Ks(ln Ks), spatial structure anisotropy of ln Ks, and normalized vertical infiltration flux (q) on the evaluations of the pore-water pressure uncertainty are investigated. Results indicate different responses of pressure head variability in the unsaturated region and the saturated region. In the unsaturated region, a larger variance of ln Ks, a higher spatial structure anisotropy, and a smaller q lead to a larger variability in pressure head, while in the saturated region, the variability in pressure head increases with the increase of variance of ln Ks, the decrease of spatial structure anisotropy, or the increase of q. These variables have great impacts on the range of fluctuation of the phreatic surface within the hillslope. The influences of these three variables on the variance of pressure head within the saturated region are greater than those within the unsaturated region, and the variance of ln Ks has the greatest impact. These results yield useful insight into the effects of heterogeneity on pressure head and uncertainty associated with predicted flow field.  相似文献   

10.
Little is known about the spatial and temporal scales of variation in aeolian processes. Studies that aim to investigate surface erodibility often sample aeolian sediment transport at the nodes of a regular grid of arbitrary size. Few aeolian transport investigations have the resources to obtain sufficient samples to produce reliable models for mapping the spatial variation of transport. This study reports the use of an innovative nested strategy for sampling multiple spatial scales simultaneously using 40 sediment samplers. Reliable models of the spatial variation in aeolian sediment transport were produced and used for ordinary punctual kriging and stochastic simulated annealing to produce maps for several wind erosion events over a 25 km2 playa in western Queensland, Australia. The results support the existence of a highly dynamic wind erosion system that was responding to possibly cyclic variation in the availability of material and fluctuations in wind energy. The spatial scale of transport was considerably larger than the small scale expected of the factors controlling surface erodibility. Thus, it appears that transport cannot be used as a surrogate of erodibility at the scale of this investigation. Simulation maps of transport provided considerably more information than those from kriging about the variability in aeolian sediment transport and its possible controlling factors. The proposed optimal sampling strategy involves a nested approach using ca 50 samplers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

A biannual survey of physico-chemical quality indices of 104 irrigation-water wells located in a cultivated plain of a Mediterranean island catchment was conducted using a multi-parameter probe. The campaign was planned so as to differentiate between the dry and wet seasons. The acquired data constituted the test bed for evaluating the results and the features of four spatial interpolation methods, i.e. ordinary kriging, universal kriging, inverse distance weighted and nearest neighbours, against those of the recently introduced bilinear surface smoothing (BSS). In several cases, BSS outperformed the other interpolation methods, especially during the two-fold cross-validation procedure. The study emphasizes the fact that both in situ measurements and good mathematical techniques for studying the spatial distribution of water quality indices are pivotal to agricultural practice management. In the specific case studied, the spatio-temporal variability of water quality parameters and the need for monitoring were evident, as low irrigation water quality was encountered throughout the study area.  相似文献   

12.
Analytical modelling of heat transport was used to address effects of uncertainty in thermal conductivity on groundwater–surface water exchange. In situ thermal conductivities and temperature profiles were measured in a coastal lagoon bed where groundwater is known to discharge. The field site could be divided into three sediment zones where significant spatial changes in thermal conductivity on metre to centimetre scale show that spatial variability connected to the sediment properties must be considered. The application of a literature‐based bulk thermal conductivity of 1.84 Wm?1 °C?1, instead of field data that ranged from 0.62 to 2.19 W m?1 °C?1, produced a mean overestimation of 2.33 cm d?1 that, considering the low fluxes of the study area, represents an 89% increase and up to a factor of 3 in the most extreme cases. Incorporating the uncertainty due to sediment heterogeneities leads to an irregular trend of the flux distribution from the shore towards the lagoon. The natural variability of the thermal conductivity associated with changes in the sediment composition resulted in a mean variation of ±0.66 cm d?1 in fluxes corresponding to a change of ±25.4%. The presence of organic matter in the sediments, a common situation in the near‐shore areas of surface water bodies, is responsible for the decrease of thermal conductivity. The results show that the natural variability of sediment thermal conductivity is a parameter to be considered for low flux environments, and it contributes to a better understanding of groundwater–surface water interactions in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The moisture content ws of a beach surface strongly controls the availability of sand for aeolian transport. Our predictive capability of the spatiotemporal variability in ws, which depends to a large extent on water table depth, is, however, limited. Here we show that water table fluctuations and surface moisture content observed during a 10-day period on a medium-grained (365μm) planar (1:30) beach can be predicted well with the nonlinear Boussinesq equation extended to include run-up infiltration and a soil–water retention curve under the assumption of hydrostatic equilibrium. On the intertidal part of the beach the water table is observed and predicted to continuously fall from the moment the beach surface emerges from the falling tide to just before it is submerged by the incoming tide. We find that on the lower 30% of the intertidal beach the water table remains within 0.1–0.2 m from the surface and that the sand is always saturated (ws≈20%, by mass). Higher up on the intertidal beach, the surface can dry to about 5% when the water table has fallen to 0.4–0.5 m beneath the surface. Above the high-tide level the water table is always too deep (>0.5 m) to affect surface moisture and, without precipitation, the sand is dry (ws < 5 − 8%). Because the water table depth on the emerged part of the intertidal beach increases with time irrespective of whether the (ocean) tide falls or rises, we find no need to include hysteresis (wetting and drying) effects in the surface-moisture modelling. Model simulations suggest that at the present planar beach only the part well above mean sea level can dry sufficiently (ws < 10%) for sand to become available for aeolian transport. ©2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
Soil moisture data of 45 years from European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the in situ observational data are used to study the temporal and spatial characteristics of the soil moisture in boreal spring in the area to the east of 100°E in China. Results show that ERA-40 soil moisture well reproduces the temporal and spatial features of observations. ERA-40 data capture the spatial pattern that the soils in Northeast China and Southwest China are wetter than those...  相似文献   

15.
化学需氧量(COD)、五日生化需氧量(BOD_5)及溶解性有机碳(DOC)是指示湖泊水质的重要指标,然而上述指标测定通常耗费大量时间、试剂及人力物力且排放大量有害废液.有色可溶性有机物(CDOM)是溶解性有机物(DOM)中可以强烈吸收光谱中的紫外光和可见光的部分,数据测定耗时短、方便快捷,且样品处理过程环境友好,能在很大程度上反映湖泊水质.本研究基于2016年2、5和8月在太湖均匀布设的32个采样点进行样品采集,运用光谱吸收与三维荧光-平行因子分析(EEMs-PARAFAC)探究太湖CDOM的光谱吸收和荧光组分,探讨CDOM光谱指标对湖泊BOD_5、COD及DOC浓度等湖泊环境质量指标的可替代性.结果表明:(1)运用EEMs-PARAFAC方法解析出3种荧光组分:类腐殖酸C1、类酪氨酸C2和类色氨酸C3.(2) COD和BOD_5和DOC在空间上呈现出相似的分布趋势,不同水期的最高值均出现在竺山湾和梅梁湾,由西北湖区至中部敞水区、东南湖湾递减.(3)在不同水期,COD、BOD_5、DOC浓度和C1组分均表现为丰水期极显著大于枯水期和平水期,a_(254)在丰、平、枯水期间无显著性差异,最大值出现在丰水期;C2与C3组分均在枯水期和平水期极显著大于丰水期.(4)在不同水文时期,COD、BOD_5和DOC浓度均与a_(254)、类腐殖酸C1呈显著正相关,丰水期太湖COD、BOD_5和DOC浓度与CDOM光谱指标的线性相关性要优于枯水期和平水期.(5) CDOM光谱指标在不同水文时期均能很好地替代COD、BOD_5和DOC等作为反映太湖水体中有机物污染程度及湖泊水质的指标.  相似文献   

16.
由于泥质所造成的附加导电现象,泥质含量及其分布形式对电阻率增大系数I和含水饱和度Sw关系具有重要影响,由于岩石物理实验中岩心孔隙结构及其组分构成、分布的微观不可调性,因而泥质分布形式所造成的影响很难通过岩心实验来单独研究。基于数字岩心的格子气自动机方法是一种有效的微观数值模拟方法,本研究利用储层岩心薄片的骨架颗粒尺寸信息资料建立数字岩心模型,结合格子气自动机技术对数字岩心不同饱和流体情况下电的传输特性进行数值模拟研究,揭示了不同泥质含量和泥质分布形式对孔隙介质导电特性非阿尔奇现象产生的影响,建立饱和度指数和泥质含量之间的关系模型,其良好的吻合性表明该方法在岩石物理研究中是一种十分有效的研究方法,而新模型适于在非阿尔奇储层进行准确的饱和度评价。  相似文献   

17.
The spatial and temporal distribution of snow accumulation is complex and significantly influences the hydrological characteristics of mountain catchments. Many snow redistribution processes, such as avalanching, slushflow or wind drift, are controlled by topography, but their modelling remains challenging. In situ measurements of snow accumulation are laborious and generally have a coarse spatial or temporal resolution. In this respect, time‐lapse photography shows itself as a powerful tool for collecting information at relatively low cost and without the need for direct field access. In this paper, the snow accumulation distribution of an Alpine catchment is inferred by adjusting a simple snow accumulation model combined with a temperature index melt model to match the modelled melt‐out pattern evolution to the pattern monitored during an ablation season through terrestrial oblique photography. The comparison of the resulting end‐of‐winter snow water equivalent distribution with direct measurements shows that the achieved accuracy is comparable with that obtained with an inverse distance interpolation of the point measurements. On average over the ablation season, the observed melt‐out pattern can be reproduced correctly in 93% of the area visible from the fixed camera. The relations between inferred snow accumulation distribution and topographic variables indicate large scatter. However, a significant correlation with local slope is found and terrain curvature is detected as a factor limiting the maximal snow accumulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Dominant flow pathways (DFPs) in mesoscale watersheds are poorly characterized and understood. Here, we make use of a conservative tracer (Gran alkalinity) and detailed information about climatic conditions and physical properties to examine how temporally and spatially variable factors interact to determine DFPs in 12 catchments draining areas from 3.4 to 1829.5 km² (Cairngorms, Scotland). After end‐member mixing was applied to discriminate between near surface and deep groundwater flow pathways, variation partitioning, canonical redundancy analyses and regression models were used to resolve: (i) What is the temporal variability of DFPs in each catchment?; (ii) How do DFPs change across spatial scales and what factors control the differences in hydrological responses?; and (iii) Can a conceptual model be developed to explain the spatiotemporal variability of DFPs as a function of climatic, topographic and soil characteristics? Overall, catchment characteristics were only useful to explain the temporal variability of DFPs but not their spatial variation across scale. The temporal variability of DFPs was influenced most by prevailing hydroclimatic conditions and secondarily soil drainability. The predictability of active DFPs was better in catchments with soils supporting fast runoff generation on the basis of factors such as the cumulative precipitation from the seven previous days, mean daily air temperature and the fractional area covered by Rankers. The best regression model R2 was 0.54, thus suggesting that the catchments’ internal complexity was not fully captured by the factors included in the analysis. Nevertheless, this study highlights the utility of combining tracer studies with digital landscape analysis and multivariate statistical techniques to gain insights into the temporal (climatic) and spatial (topographic and pedologic) controls on DFPs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A coastal risk assessment system simulates the basic physical mechanisms underlying contaminant transport in Tampa Bay. This risk assessment system, comprised of a three-dimensional numerical circulation model coupled to a Lagrangian particle tracking model, simulates the transport and dispersion of a toxic dinoflagellate bloom. Instantaneous velocity output from the circulation model drives the movement of particles, each representing a fraction of a K. brevis bloom, within the model grid cells. Hindcast simulations of the spatial distribution of the K. brevis bloom are presented and compared with water sample concentrations collected during the peak of the bloom. Probability calculations, herein called transport quotients, allow for rapid analysis of bay-wide K. brevis transport showing locations most likely to be impacted by the contaminant. Maps constructed from the transport quotients provide managers with a bay-wide snapshot of areas in Tampa Bay most at risk during a hazardous bloom event.  相似文献   

20.
Hydrogen and oxygen isotopes of water are common environmental tracers used to investigate hydrological processes, such as evaporation, vegetation water use, surface water–groundwater interaction, and groundwater recharge. The water isotope signature in surface water and groundwater evolves from the initial rain signature. In mountain terrain, rain water stable isotope composition spatially varies due to complex orographic precipitation processes. Many studies have examined the isotope–elevation relationships, while few have quantitatively investigate the terrain aspect and slope effect on rain isotope distribution. In this paper, we examine the orographic effects more completely, including elevation, terrain slope and aspect, on stable isotope distribution in the Mount Lofty Ranges (MLR) of South Australia, using a multivariate regression model. The regression of precipitation isotope composition suggests that orographic effects are the dominant controls on isotope spatial variability. About 75% of spatial variability in δ18O and deuterium excess is represented by the regression using solely orography-related variables (elevation, terrain aspect and slope), with about 25% of δ18O spatial variability attributed to the terrain aspect and slope effect. The lapse rate is about −0.25‰ for every 100 m at both windward and leeward slopes. However, at the same elevation, δ18O at the leeward slope (eastern MLR) is 0.5‰ larger than that at the windward slope. The difference can be explained by different mechanisms – continuous rain-out processes on the windward side and sub-cloud evaporation on the leeward side. Both δ18O and deuterium excess maps (1 km resolution) are constructed based on the regression results for the MLR. Both maps are consistent with groundwater of local precipitation origin, and useful to examine groundwater recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号