首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While structural engineers have traditionally focused on individual components (bridges, for example) of transportation networks for design, retrofit, and analysis, it has become increasingly apparent that the economic costs to society after extreme earthquake events are caused at least as much from indirect costs as direct costs due to individual structures. This paper describes an improved methodology for developing probabilistic estimates of repair costs and repair times that can be used for evaluating the performance of new bridge design options and existing bridges in preparation for the next major earthquake. The proposed approach in this paper is an improvement on previous bridge loss modeling studies—it is based on the local linearization of the dependence between repair quantities and damage states so that the resulting model follows a linear relationship between damage states and repair points. The methodology uses the concept of performance groups (PGs) that account for damage and repair of individual bridge components and subassemblies. The method is validated using two simple examples that compare the proposed method to simulation and previous methods based on loss models using a power–law relationship between repair quantities and damage. In addition, an illustration of the method is provided for a complete study on the performance of a common five‐span overpass bridge structure in California. Intensity‐dependent repair cost ratios (RCRs) and repair times are calculated using the proposed approach, as well as plots that show the disaggregation of repair cost by repair quantity and by PG. This provides the decision maker with a higher fidelity of data when evaluating the contribution of different bridge components to the performance of the bridge system, where performance is evaluated in terms of repair costs and repair times rather than traditional engineering quantities such as displacements and stresses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
It has been well documented that following a major earthquake a substantial percentage of economic loss results from downtime of essential lifelines in and out of major urban centres. This has thus led to an improvement of both performance‐based seismic design philosophies and to the development of cost‐effective seismic structural systems capable of guaranteeing a high level of protection, low structural damage and reduced downtime after a design‐level seismic event. An example of such technology is the development of unbonded post‐tensioned techniques in combination with rocking–dissipating connections. In this contribution, further advances in the development of high‐performance seismic‐resistant bridge piers are achieved through the experimental validation of unbonded post‐tensioned bridge piers with external, fully replaceable, mild steel hysteretic dissipaters. The experimental response of three 1 : 3 scale unbonded, post‐tensioned cantilever bridge piers, subjected to quasi‐static and pseudo‐dynamic loading protocols, are presented and compared with an equivalently reinforced monolithic benchmark. Minimal physical damage is observed for the post‐tensioned systems, which exhibit very stable energy dissipation and re‐centring properties. Furthermore, the external dissipaters can be easily replaced if severely damaged under a major (higher than expected) earthquake event. Thus, negligible residual deformations, limited repair costs and downtime can be achieved for critical lifeline components. Satisfactory analytical–experimental comparisons are also presented as a further confirmation of the reliability of the design procedure and of the modelling techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
基于GIS的城市地震应急反应系统   总被引:5,自引:0,他引:5  
介绍了为城市政府部门服务地基于GIS的地震应急决策支持系统,该系统能评估地震的危险性,评定地震的破坏和损失,为地震应急反应和震后恢复重建提供辅助决策,本文对该系统的原理、设计准则、结构和功能作了阐述,系统分四个部分;信息数据库系统;分析模块;决策支持子系统和系统用户界面。信息数据库系统由68个图层构成;有28个分析模块,能完成设定地震的等震线生成、场地影响分析、破坏与损失估计,为抢险、援救、人员疏散和其他的应急行动提供决策,最后,通过模拟一次历史地震检验了系统的运行情况。  相似文献   

5.
In light of recent earthquakes, structures damaged during an initial seismic event (mainshock) may be more vulnerable to severe damage and collapse during a subsequent event (aftershock). In this paper, a framework for the development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a bridge damaged during an initial event will exhibit a given damage state following one or more subsequent events. The framework is capable of (i) quantifying the cumulative damage of unrepaired bridges subjected to mainshock–aftershock sequences (effect of multiple earthquakes) and (ii) evaluating the effectiveness of column repair schemes such as steel and fiber‐reinforced‐polymer jackets (post‐repair effect of jackets). To achieve this aim, the numerical model of repaired columns is validated using existing experimental results. A non‐seismically designed bridge is chosen as a case study and is modeled for three numerical bridge models: a damaged (but unrepaired) bridge model, and two bridge models with columns repaired with steel and fiber‐reinforced polymer jackets. A series of back‐to‐back dynamic analyses under successive earthquakes are performed for each level of existing damage. Using simulated results, failure probabilities of components for multiple limit states are computed for each bridge model and then are used to evaluate the relative vulnerability of components associated with cumulative damage and column repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Critical issues in emergency management after a seismic event are assessing the functionality of the main infrastructures (hospitals, road network, etc.) and deciding on their usability just after the mainshock. The use of a pure analytical tool to assess the aftershock risk of a structure can be contrasted with the limited time available to make a decision about the usability of a structure. For this reason, this paper presents a method for evaluating post‐earthquake bridge practicability based on a rational combination of information derived from numerical analyses and in situ inspections. In particular, we propose an effective tool to speed up the decision‐making process involved in evaluating the seismic risk of mainshock‐damaged bridges in the context of aftershocks. The risk is calculated by combining the aftershock hazard using the Omori law and the fragility curves of the structure, which are calculated using the regression analysis of a sample of results obtained with data randomly generated by the Latin Hypercube Sampling technique and updated based on the results of in situ inspection. Different decision criteria regarding the practicability of bridges are discussed, and a new criterion is proposed. This tool was applied to an old highway RC viaduct. There are two main findings, including the high sensitivity to Bayesian updating (especially when the damage predicted by numerical analysis does not match the real damage) and the criteria used to decide when re‐open bridges to traffic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Expected annual loss (EAL), which can be expressed in dollars, is an effective way of communicating the seismic vulnerability of constructed facilities to owners and insurers. A simplified method for estimating EAL without conducting time‐consuming non‐linear dynamic analyses is presented. Relationships between intensity measures and engineering demand parameters resulting from a pushover analysis and a modified capacity‐spectrum method are combined with epistemic and aleatory uncertainties to arrive at a probabilistic demand model. Damage measures are established to determine thresholds for damage states from which loss ratios can be defined. Financial implications due to damage can then be quantified in the form of EAL by integrating total losses for all likely earthquake scenarios. This rapid loss estimation method is verified through the computationally intensive incremental dynamic analysis, with the results processed using a distribution‐free methodology. To illustrate the application of the proposed method, the seismic vulnerability of two highway bridge piers is compared; one bridge is traditionally designed for ductility while the other is based on an emerging damage avoidance design (DAD) philosophy. The DAD pier is found to have a clear advantage over the conventional pier; the EAL of the DAD pier is less than 20% of its ductile counterpart. This is shown to be primarily due to its inherent damage‐free behaviour for small to medium earthquake intensities, whose contribution to EAL is significantly more than that of very rare events. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This study proposes a procedure for identifying spectral response curves for earthquake‐damaged areas in developing countries without seismic records. An earthquake‐damaged reinforced concrete building located in Padang, Indonesia was selected to illustrate the identification of the maximum seismic response during the 2009 West Sumatra earthquake. This paper summarizes the damage incurred by the building; the majority of the damage was observed in the third story in the span direction. The damage was quantitatively evaluated using the damage index R according to the Japanese guidelines for post‐earthquake damage evaluation. The damage index was also applied to the proposed spectral response identification method. The seismic performance of the building was evaluated by a nonlinear static analysis. The analytical results reproduced a drift concentration in the third story. The R‐index decreased with an increase in the story drift, which provided an estimation of the maximum response of the building during the earthquake. The estimation was verified via an earthquake response analysis of the building using ground acceleration data, which were simulated based on acceleration records of engineering bedrock that considered site amplification. The maximum response estimated by the R‐index was consistent with the maximum response obtained from the earthquake response analysis. Therefore, the proposed method enables the construction of spectral response curves by integrating the identification results for the maximum responses in a number of earthquake‐damaged buildings despite a lack of seismic records. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

9.
Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour depth exceeds a critical level, the strength of the foundation is insufficient to withstand the imposed seismic demand, which induces the potential for unacceptable damage to the piles during an earthquake. This paper presents an analytical approach to assess the earthquake damage potential of bridges with foundation exposure and identify the critical scour depth that causes the seismic performance of a bridge to differ from the original design. The approach employs the well-accepted response spectrum analysis method to determine the maximum seismic response of a bridge. The damage potential of a bridge is assessed by comparing the imposed seismic demand with the strengths of the column and the foundation. The versatility of the analytical approach is illustrated with a numerical example and verified by the nonlinear finite element analysis. The analytical approach is also demonstrated to successfully determine the critical scour depth. Results highlight that relatively shallow scour depths can cause foundation damage during an earthquake, even for bridges designed to provide satisfactory seismic performance.  相似文献   

10.
In this paper an approach is developed for establishing optimal maintenance (repair) strategies of structures in seismic zones. The approach is based on expected future costs and the main decision variable is a damage threshold for repair given an acceptable reliability level. It is considered that structural damage accumulates over a number of earthquakes until a threshold is reached or exceeded, after which the structure is repaired so that there is no remaining damage. A Markov model is implemented for such a process of damage accumulation during future earthquakes. An algorithm is proposed for computing non‐linear structural response to earthquakes using a damage function model. This algorithm is used to evaluate transition probabilities between damage states based on simulations of future earthquakes of given intensities. Expressions are derived for evaluating expected life‐cycle damage costs and structural reliability as a function of time and of the damage threshold for repair. As an application, a single‐degree‐of‐freedom structural system is studied. In addition, the paper addresses the case of instrumented structures where information from earthquake response records is available. Such information is incorporated into the formulation for maintenance strategies by means of a Bayesian approach for updating the probability distribution of structural damage and of non‐linear behaviour parameters so that predictions about costs and reliability are improved. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The potential of post‐tensioned self‐centering moment‐resisting frames (SC‐MRFs) and viscous dampers to reduce the economic seismic losses in steel buildings is evaluated. The evaluation is based on a prototype steel building designed using four different seismic‐resistant frames: (i) conventional moment resisting frames (MRFs); (ii) MRFs with viscous dampers; (iii) SC‐MRFs; or (iv) SC‐MRFs with viscous dampers. All frames are designed according to Eurocode 8 and have the same column/beam cross sections and similar periods of vibration. Viscous dampers are designed to reduce the peak story drift under the design basis earthquake (DBE) from 1.8% to 1.2%. Losses are estimated by developing vulnerability functions according to the FEMA P‐58 methodology, which considers uncertainties in earthquake ground motion, structural response, and repair costs. Both the probability of collapse and the probability of demolition because of excessive residual story drifts are taken into account. Incremental dynamic analyses are conducted using models capable to simulate all limit states up to collapse. A parametric study on the effect of the residual story drift threshold beyond which is less expensive to rebuild a structure than to repair is also conducted. It is shown that viscous dampers are more effective than post‐tensioning for seismic intensities equal or lower than the maximum considered earthquake (MCE). Post‐tensioning is effective in reducing repair costs only for seismic intensities higher than the DBE. The paper also highlights the effectiveness of combining post‐tensioning and supplemental viscous damping by showing that the SC‐MRF with viscous dampers achieves significant repair cost reductions compared to the conventional MRF. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
An important component of probabilistic risk assessment methods is the development of models to quantify the direct consequences of damage to geo‐structural components for a given intensity of the hazard. This paper presents a general probabilistic framework for correlated repair cost and downtime estimation of geo‐structures exposed to seismic hazards. The framework uses as input the results of nonlinear time‐history analysis of geo‐structures for the set of earthquake records that are representative of the seismic hazard models for the region of interest. The repair cost and downtime are estimated for individual earthquakes probabilistically considering the uncertainties associated with damage states. In addition, the formulation of the repair cost and downtime accounts for the reduction in the repair requirements as the number of damaged components in the given damage state increases. An analytical linear and two bilinear regression models are proposed for conditional correlated seismic repair cost and downtime estimation of geo‐structures given the intensity measure. The proposed framework is demonstrated by developing seismic repair models of a typical pile‐supported wharf structure on the west coast of the United States. The presented framework is general and can be applied to other types of geo‐structures and hazards and can include other decision variables such as loss of life as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A performance‐based earthquake engineering approach is developed for the seismic risk assessment of fixed‐roof atmospheric steel liquid storage tanks. The proposed method is based on a surrogate single‐mass model that consists of elastic beam‐column elements and nonlinear springs. Appropriate component and system‐level damage states are defined, following the identification of commonly observed modes of failure that may occur during an earthquake. Incremental dynamic analysis and simplified cloud are offered as potential approaches to derive the distribution of response parameters given the seismic intensity. A parametric investigation that engages the aforementioned analysis methods is conducted on 3 tanks of varying geometry, considering both anchored and unanchored support conditions. Special attention is paid to the elephant's foot buckling formation, by offering extensive information on its capacity and demand representation within the seismic risk assessment process. Seismic fragility curves are initially extracted for the component‐level damage states, to compare the effect of each analysis approach on the estimated performance. The subsequent generation of system‐level fragility curves reveals the issue of nonsequential damage states, whereby significant damage may abruptly appear without precursory lighter damage states.  相似文献   

14.
15.
The seismic behavior of a large diameter extended pile shaft founded on a dense sandy site is investigated in this paper. First, a deterministic analysis is conducted including both nonlinear dynamic analysis(NDA) and pushover analysis to gain insights into the behavior of the pile and make sure an appropriate modeling technique is utilized. Then a probabilistic analysis is performed using the results of NDA for various demands. To this end a set of 40 pulse-like ground motions are picked and subsequently 40 nonlinear dynamic and pushover analyses are performed. The data obtained from NDA are used to generate probabilistic seismic demand model(PSDM) plots and consequently the median line and dispersion for each plot are computed. The NDA and pushover data are also plotted against each other to find out to what extent they are correlated. These operations are done for various engineering demand parameters(EDPs). A sensitivity analysis is done to pick the most appropriate intensity measure(IM) which would cause a minimum dispersion in PSDM plots out of 7 different IMs. Peak ground acceleration(PGA) is found to be the most appropriate IM. Pushover coefficient equations as a function of PGA are proposed which can be applied to the pushover analysis data to yield a better outcome with respect to the NDA. At the end, the pacific earthquake engineering research(PEER) center methodology is utilized to generate the fragility curves using the properties obtained from PSDM plots and considering various states of damage ranging from minor to severe. The extended pile shaft shows more vulnerability with a higher probability with respect to minor damage compared to severe damage.  相似文献   

16.
The scope of this study is to investigate the effect of the direction of seismic excitation on the fragility of an already constructed, 99‐m‐long, three‐span highway overpass. First, the investigation is performed at a component level, quantifying the sensitivity of local damage modes of individual bridge components (namely, piers, bearings, abutments, and footings) to the direction of earthquake excitation. The global vulnerability at the system level is then assessed for a given angle of incidence of the earthquake ground motion to provide a single‐angle, multi‐damage probabilistic estimate of the bridge overall performance. A multi‐angle, multi‐damage, vulnerability assessment methodology is then followed, assuming uniform distribution for the angle of incidence of seismic waves with respect to the bridge axis. The above three levels of investigation highlight that the directivity of ground motion excitation may have a significant impact on the fragility of the individual bridge components, which shall not be a priori neglected. Most importantly, depending on the assumptions made for the component to the system level transition, this local sensitivity is often suppressed. It may be therefore necessary, based on the ultimate purpose of the vulnerability or the life cycle analysis, to obtain a comprehensive insight on the multiple damage potential of all individual structural and foundation components under multi‐angle excitation, to quantify the statistical correlation among the distinct damage modes and to identify the components that are both most critical and sensitive to the direction of ground motion and carefully define their limit states which control the predicted bridge fragility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Loss ratio, which is the ratio of the repair cost to the total replacement cost, is an effective parameter for representing structural and nonstructural damage caused by earthquakes. A probabilistic loss estimation framework is first presented that directly relates hazard to response and hence to losses. A key feature of the loss estimation approach is the determination of losses without need for customary fragility curves. Relationships between intensity measures and engineering demand parameters are used to define the demand model. An empirically calibrated loss model in the form of a power curve with upper and lower cut‐offs is used in conjunction with the demand model to estimate loss ratios. Loss ratios for each of the damage states take into account epistemic uncertainty and an effect on price surge following a major hazardous event. The loss model is calibrated and validated for bridges designed based on the prevailing Caltrans, Japan, and New Zealand standards. The loss model is then transformed to provide a composite seismic hazard–loss relationship that is used to estimate the expected annual loss for structures. The closed‐form four‐step stochastic loss estimation model is applied to the bridges designed for ductility. Results of these ductile designs are compared to a bridge detailed to an emerging damage avoidance design philosophy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
交通系统是生命线工程重要的组成部分,交通系统的破坏对震后的抗震救灾以及社会功能的恢复影响重大。伽师M S6.4地震造成交通系统中桥梁构件破坏、路面开裂及路基受损等多种形式的震害,影响正常使用,造成了比较严重的经济损失。文中通过现场调查及资料收集,总结了伽师M S6.4地震中交通系统的震害现象,简要分析了交通系统的震害特点及原因,为今后交通系统抗震设防、减轻地震灾害以及抗震救灾工作提供依据。  相似文献   

19.
As part of the 2007 Tri-Center Field Mission to Japan, a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers, namely, Multidisciplinary Center for Earthquake Engineering Research (MCEER), Mid-America Earthquake Center (MAE), and Pacifi c Earthquake Engineering Research Center (PEER), undertook a reconnaissance visit to the affected area shortly after the 2007 Niigata- Chuetsu Oki earthquake. This mission provided an opportunity to review the nature of the earthquake damage that occurred, as well as to assess the signifi cance of the damage from an educational perspective. This paper reports on the seismological characteristics of the earthquake, preliminary fi ndings of geotechnical and structural damage, and the causes of the observed failures or collapses. In addition, economic and socio-economic considerations and experiences to enhance earthquake resilience are presented.  相似文献   

20.
Fragility curves express the probability of structural damage due to earthquakes as a function of ground motion indices, e.g., PGA, PGV. Based on the actual damage data of highway bridges from the 1995 Hyogoken‐Nanbu (Kobe) earthquake, a set of empirical fragility curves was constructed. However, the type of structure, structural performance (static and dynamic) and variation of input ground motion were not considered to construct the empirical fragility curves. In this study, an analytical approach was adopted to construct fragility curves for highway bridge piers of specific bridges. A typical bridge structure was considered and its piers were designed according to the seismic design codes in Japan. Using the strong motion records from Japan and the United States, non‐linear dynamic response analyses were performed, and the damage indices for the bridge piers were obtained. Using the damage indices and ground motion indices, fragility curves for the bridge piers were constructed assuming a lognormal distribution. The analytical fragility curves were compared with the empirical ones. The proposed approach may be used in constructing the fragility curves for highway bridge structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号