首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation in the seismic collapse fragility of reinforced concrete frame buildings predicted using different ground motion (GM) selection methods is investigated in this paper. To simulate the structural collapse, a fiber‐element modelling approach with path‐dependent cyclic nonlinear material models that account for concrete confinement and crushing, reinforcement buckling as well as low cycle fatigue is used. The adopted fiber analysis approach has been found to reliably predict the loss in vertical load carrying capacity of structural components in addition to the sidesway mode of collapse due to destabilizing P–Δ moments at large inelastic deflections. Multiple stripe analysis is performed by conducting response history analyses at various hazard levels to generate the collapse fragility curves. To select GMs at various hazard levels, two alternatives of uniform hazard spectrum (UHS), conditional mean spectrum (CMS) and generalized conditional intensity measure (GCIM) are used. Collapse analyses are repeated based on structural periods corresponding to initial un‐cracked stiffness and cracked stiffness of the frame members. A return period‐based intensity measure is then introduced and applied in estimating collapse fragility of frame buildings. In line with the results of previous research, it is shown that the choice of structural period significantly affects the collapse fragility predictions. Among the GM selection methods used in this study, GCIM and CMS methods predict similar collapse fragilities for the case study building investigated herein, and UHS provides the most conservative prediction of the collapse capacity, with approximately 40% smaller median collapse capacity compared to the CMS method. The results confirm that collapse probability prediction of buildings using UHS offers a higher level of conservatism in comparison to the other selection methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This article reports a method to determine the storey‐wise column size for displacement‐based design of reinforced concrete frame buildings with a wide range of storey drift and building plan. The method uses a computer program based algorithm. The basic relation used in the algorithm is formulated by considering the various possible deformation components involved in the overall frame deformation. As a necessity to represent the deformation component due to plastic rotation of beam members, a relation between the beam plastic rotation and the target‐drift is adopted. To control the dynamic amplification of interstorey drift, a target‐drift dependant design‐drift reduction factor is used. The dynamic amplification of column moment is accounted with the help of an approximate conversion of fundamental period of the building from the effective period of the equivalent SDOF system. To avoid the formation of plastic hinge in column members, a design‐drift dependant column–beam moment capacity ratio is used. The method successfully determines the storey‐wise column size for buildings of four plans of different varieties, heights up to 12 storeys and target‐drift up to 3%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
型钢混凝土梁柱框支剪力墙结构抗震性能试验研究   总被引:3,自引:0,他引:3  
框支剪力墙结构在实际工程中经常被采用,震害表明钢筋混凝土框支剪力墙结构抗震性能较差,本文提出型钢混凝土梁柱框支剪力墙结构对此加以改进。作者进行了4个1/4缩尺模型在竖向荷载和单调及低周反复水平荷载作用下的对比试验,其中3个试件采用型钢混凝土转换梁、型钢混凝土框支柱,1个试件采用钢筋混凝土转换梁、钢筋混凝土框支柱。我们分析其承载力、刚度、变形、延性和破坏形态等。试验结果表明,型钢混凝土梁柱框支剪力墙结构承载力高、延性好、滞回曲线丰满,变形能力和耗能能力较强。  相似文献   

4.
The assessment of earthquake loss often requires the definition of a relation between a measure of damage and a quantity of loss, usually achieved through the employment of a damage‐to‐loss model. These models are frequently characterized by a large variability, which inevitably increases the uncertainty in the vulnerability assessment and earthquake loss estimation. This study provides an insight on the development of damage‐to‐loss functions for moment‐frame reinforced concrete buildings through an analytical methodology. Tri‐dimensional finite element models of existing reinforced concrete buildings were subjected to a number of ground motion records compatible with the seismicity in the region of interest, through nonlinear dynamic analysis. These results were used to assess, for a number of damage states, the probability distribution of loss ratio, taking into consideration member damage and different repair techniques, as well as to derive sets of fragility functions. Then, a vulnerability model (in terms of the ratio of cost of repair to cost of replacement, conditional on the level of ground shaking intensity) was derived and compared with the vulnerability functions obtained through the combination of various damage‐to‐loss models with the set of fragility functions developed herein. In order to provide realistic estimates of economic losses due to seismic action, a comprehensive study on repair costs using current Portuguese market values was also carried out. The results of this study highlight important issues in the derivation of vulnerability functions, which are a fundamental component for an adequate seismic risk assessment. © 2015 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

5.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
震后功能恢复能力是指建筑物、社区或城市等遭受地震影响后实现功能恢复的能力。以一钢筋混凝土框架结构为对象,基于OpenSees有限元分析平台,对其进行增量动力分析,得到其对应于不同损伤状态的地震易损性曲线。进而基于单体建筑损失评估理论,评估该结构在不同强度水准地震动作用下的地震损失,包括直接经济损失和间接经济损失等。在此基础上,分别利用直线型、指数型以及三角函数型功能恢复模型,在不同强度水准地震动作用下,分别计算该结构的震后功能恢复能力。结果表明:随着地震动强度的增加,基于3种恢复模型计算得到的震后功能恢复能力都在下降,而且直线型和三角函数型恢复模型得到的恢复能力均比指数型的下降更快;在同一强度水准地震动作用下,基于指数型恢复模型计算得到的震后功能恢复能力均高于直线型和三角函数型恢复模型,即使在较强水准地震动作用下,根据指数型恢复模型得到的恢复能力依然较大。而在各个强度水准地震动作用下,基于直线型和三角函数型恢复模型得到的震后功能恢复能力非常接近。  相似文献   

7.
This paper presents a procedure for seismic design of reinforced concrete structures, in which performance objectives are formulated in terms of maximum accepted mean annual frequency (MAF) of exceedance, for multiple limit states. The procedure is explicitly probabilistic and uses Cornell's like closed‐form equations for the MAFs. A gradient‐based constrained optimization technique is used for obtaining values of structural design variables (members' section size and reinforcement) satisfying multiple objectives in terms of risk levels. The method is practically feasible even for real‐sized structures thanks to the adoption of adaptive equivalent linear models where element‐by‐element stiffness reduction is performed (2 linear analyses per intensity level). General geometric and capacity design constraints are duly accounted for. The procedure is applied to a 15‐storey plane frame building, and validation is conducted against results in terms of drift profiles and MAF of exceedance, obtained by multiple‐stripe analysis with records selected to match conditional spectra. Results show that the method is suitable for performance‐based seismic design of RC structures with explicit targets in terms of desired risk levels.  相似文献   

8.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
为推广装配式混凝土框架结构的应用,提出3种不同的新型装配式钢筋混凝土框架中节点连接形式,进行低周往复荷载试验。对比各试件的破坏形态、滞回性能、刚度退化、累积耗能和节点剪切变形等抗震指标。研究结果表明:采用方钢管连接的装配式混凝土节点呈现梁端弯曲破坏,采用工字钢连接或对拉螺栓连接的节点呈现节点核心区剪切破坏。采用方钢管的连接形式既能改善节点核心区的破坏形态,又能提高其承载能力、变形能力、耗能能力和梁端转动能力,同时显著改善节点的滞回特性,减小核心区的剪切变形。在弹塑性和塑性变形阶段,采用方钢管连接形式的装配式混凝土节点的抗震性能优于工字钢连接和对拉螺栓连接的节点。此外,采用工字钢连接形式比对拉螺栓连接形式的节点具有更高的承载能力、耗能能力和较小的核心区剪切变形。  相似文献   

10.
Risk‐based seismic design, as introduced in this paper, involves the use of different types of analysis in order to satisfy a risk‐based performance objective with a reasonable utilization rate and sufficient reliability. Differentiation of the reliability of design can be achieved by defining different design algorithms depending on the importance of a structure. In general, the proposed design is iterative, where the adjustment of a structure during iterations is the most challenging task. Rather than using automated design algorithms, an attempt has been made to introduce three simple guidelines for adjusting reinforced concrete frames in order to increase their strength and deformation capacity. It is shown that an engineer can design a reinforced concrete frame in a few iterations, for example, by adjusting the structure on the basis of pushover analysis and checking the final design by means of nonlinear dynamic analysis. A possible variant of the risk‐based design algorithm for the collapse safety of reinforced concrete frame buildings is proposed, and its application is demonstrated by means of an example of an eight‐storey reinforced concrete building. Four iterations were required in order to achieve the risk‐based performance objective with a reasonable utilization rate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
地震作用会造成钢筋混凝土框架发生平面和垂直方向的变形,导致其结构受到更大的地震力,加剧损伤程度。形状记忆合金(SMA)材料在外力作用下能够快速恢复变形前形状,降低框架损伤程度,进一步提高框架结构的承载能力和稳定性。基于此,有必要研究形状记忆合金混凝土框架建筑的抗震性能。以某实际工程为例,采用ANSYS软件建立钢筋混凝土框架有限元模型,选取天津地震波、北岭地震波、印度洋地震波及人工地震波作为地震震动输入,记录地震震动下时程结果。研究结果表明,预应力筋断裂后,该结构在地震作用下的滞回曲线为饱满的旗帜形,最大层间位移为1/125,残余变形在±10 mm之间,最高峰值荷载为211 kN,水平承载力较强,表明其自复位性能较高、地震响应效果较优、抗震承载力较强,可以有效提高建筑结构的安全性和可靠性。  相似文献   

14.
The effect of stiffness degradation in reinforced concrete structural members on the inelastic response of multistorey buildings to earthquakes is investigated. In particular, the following question is examined. How do the ductility requirements for multistorey systems with degrading stiffness behaviour compare with those for structures with ordinary bilinear hysteretic property? Inelastic dynamic responses of two idealized multistorey buildings, one having a long and the other a relatively short fundamental period, to an ensemble of twenty simulated earthquakes representative of moderately intense ground motions in California at moderate epicentral distances on firm ground, are analysed for ordinary bilinear hysteretic behaviour and for bilinear hysteretic behaviour with stiffness degradation property. The conclusions deduced from the results of this investigation include the following (1) It is, in general, not possible to predict the maximum response of a degrading stiffness system from results for the corresponding ordinary bilinear system (2) The differences in ductility requirements due to stiffness degradation are generally smaller than those associated with probabilistic variability from one ground motion to another (3) Stiffness degradation has little influence on the ductility requirements for flexible buildings, but it leads to increased ductility requirements for stiff buildings.  相似文献   

15.
Response spectrum matching is commonly used to generate ground motions with response spectra matching a scenario target spectrum. There is some debate in the literature about whether spectrum‐matched motions lead to biased structural analysis results. Furthermore, there are no objective, quantitative criteria available for deciding whether a ground motion has been manipulated excessively by spectrum matching, and whether large modification may also lead to bias. This study investigates both of these issues by presenting the results of structural analysis using two reinforced concrete moment frame models and two earthquake scenarios, with suites of unmatched and matched ground motions. Through comparison with a robust benchmark, it is shown that no significant bias is introduced by spectrum matching. The period range and target damping values for matching are also investigated, and matching up to three times the fundamental period is shown to be beneficial in reducing dispersion in the results. Finally, these analyses were also used to investigate whether large changes in the ground motion lead to biased analysis results. Several potential measures of change are investigated, including those based on peak absolute ground motion, cumulative squared ground motion (absolute or normalized), and input energy into single‐degree‐of‐freedom systems. Although no systematic, statistically significant correlation is found for the analysis results in terms of any of these measures of change, tentative criteria are proposed, which may be used by analysts to aid in the decision of whether to accept or reject a spectrum‐matched motion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
进行了9个钢纤维高强混凝土框架边节点的抗震试验.通过测试钢纤维高强混凝土框架边节点梁端的荷载-变形滞回曲线和梁相关截面的横向变形,研究了钢纤维体积率、掺加范围和轴压比等因素对高强混凝土框架边节点梁截面曲率延性和滞回曲线的影响.结果表明,钢纤维能改善高强混凝土框架边节点梁截面延性,显著提高高强混凝土框架节点的抗震延性和耗能能力,对解决节点箍筋密集、改善施工条件具有明显效果.  相似文献   

18.
Shaking table test results from a one‐story, two‐bay reinforced concrete frame sustaining shear and axial failures are compared with nonlinear dynamic analyses using models developed for the collapse assessment of older reinforced concrete buildings. The models provided reasonable estimates of the overall frame response and lateral strength degradation; however, the measured drifts were underestimated by the models. Selected model parameters were varied to investigate the sensitivity of the calculated response to changes in the drift at shear failure, rate of shear strength degradation, and drift at axial failure. For the selected ground motion, the drift at shear failure and rate of shear strength degradation did not have a significant impact on the calculated peak drift. By incorporating shear and axial‐load failure models, the analytical model is shown to be capable of predicting the axial‐load failure for a hypothetical frame with three nonductile columns. Improvements are needed in drift demand estimates from nonlinear dynamic analysis if such analyses are to be used in displacement‐based performance assessments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Post‐earthquake reconnaissance has reported the vulnerability of older reinforced concrete (RC) columns lacking details for ductile response. Research was undertaken to investigate the full‐range structural hysteretic behavior of older RC columns. A two‐dimensional specimen frame, composed of nonductile and ductile columns to allow for load redistribution, was subjected to a unidirectional base motion on a shaking table until global collapse was observed. The test demonstrates two types of column failure, including flexure‐shear and pure flexural failure. Test data are compared with various simplified assessment models commonly used by practicing engineers and researchers to identify older buildings that are at high risk of structural collapse during severe earthquake events. Comparison suggests that ASCE/SEI 41‐06 produces very conservative estimates on load–deformation relations of flexure‐shear columns, while the recently proposed ASCE/SEI 41‐06 update imposes significant modifications on the predictive curve, so that improved accuracy has been achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper discusses the sensitivity of softening reinforced concrete frame structures to the changes in input ground motion and investigates the possibility of localizations for this type of structure in static and dynamic analysis. A finite element model is used in which the sections resisting force are calculated using a proposed differential hysteretic model. This model is especially developed for modelling softening behaviour under cyclic loading. To obtain parameters of the differential model the moment–curvature of each section is evaluated using a microplane constitutive law for concrete and bi‐linear elasto‐plastic law for reinforcements. The capability of the procedure is verified by comparing results with available experimental data at element level, which shows good accuracy of the procedure. The effect of possible changes in ground motion is assessed using a non‐stationary Kanai–Tajimi process. This process is used to generate ground motions with approximately the same amplitude and frequency content evolution as those of base ground motion. The possibility of localization in static and dynamic loading is investigated using two structures. A measure for the possibility of localization in code‐designed structures is obtained. This study indicates that localization may occur in ordinary moment‐resisting structures located in high seismic zones. Localization may result in substantial drift in global response and instability due to Pδ effect. Also, it is shown that the structure becomes very sensitive to the input ground motion. It is concluded that allowance by some design codes of the use of ordinary moment‐resisting frames in regions with high seismicity should be revised or improvements should be made in the detailing requirements at critical sections of these structures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号