首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
带裙房高层建筑地震反应控制振动台试验研究   总被引:1,自引:1,他引:0  
2002年9月在香港理工大学成功地进行了带裙房高层建筑地震反应控制试验研究。设计和制作的结构模型是带3层裙房的12层高楼剪切模型,在裙房顶层与主楼之间安装单MR阻尼器形成MR阻尼器耦联结构模型。MR阻尼器采用美国LORD公司摩擦型MR阻尼器,并且选用其配套产品计算机电流控制器对其进行控制,控制系统采用德国dSPACE公司实时控制系统。对独立主楼、独立裙房和原结构模型的动力特性进行了辨识;对结构模型进行了El Centro地震动作用下的地震反应振动台试验;以作者提出的MR阻尼器半主动逻辑控制算法,对MR阻尼器耦联的结构模型进行了地震反应振动台试验。试验结果表明:用MR阻尼器耦联主楼与裙房,采用半主动逻辑控制方法进行控制,能有效抑制主楼的鞭梢效应并使主楼和裙房的地震反应减小。  相似文献   

2.
Multi‐storey buildings made of cross‐laminated timber panels (X‐lam) are becoming a stronger and economically valid alternative in Europe compared with traditional masonry or concrete buildings. During the design process of these multi‐storey buildings, also their earthquake behaviour has to be addressed, especially in seismic‐prone areas such as Italy. However, limited knowledge on the seismic performance is available for this innovative massive timber product. On the basis of extensive testing series comprising monotonic and reversed cyclic tests on X‐lam panels, a pseudodynamic test on a one‐storey X‐lam specimen and 1D shaking table tests on a full‐scale three‐storey specimen, a full‐scale seven‐storey building was designed according to the European seismic standard Eurocode 8 and subjected to earthquake loading on a 3D shaking table. The building was designed with a preliminary action reduction factor of three that had been derived from the experimental results on the three‐storey building. The outcomes of this comprehensive research project called ‘SOFIE – Sistema Costruttivo Fiemme’ proved the suitability of multi‐storey X‐lam structures for earthquake‐prone regions. The buildings demonstrated self‐centring capabilities and high stiffness combined with sufficient ductility to avoid brittle failures. The tests provided useful information for the seismic design with force‐based methods as defined in Eurocode 8, that is, a preliminary experimentally based action reduction factor of three was confirmed. Valid, ductile joint assemblies were developed, and their importance for the energy dissipation in buildings with rigid X‐lam panels became evident. The seven‐storey building showed relatively high accelerations in the upper storeys, which could lead to secondary damage and which have to be addressed in future research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
两结构高效阻尼控制体系试验研究   总被引:2,自引:0,他引:2  
本文通过模拟地震动振动台试验,研究了两个相邻结构模型的地震响应,结构模型采用一种高效阻尼装置(High Efficient Damper for Multi—Structure System即HEDMS)连接。非线性时程分析与振动台试验结果都证明了该阻尼装置能高效发挥软钢阻尼器的耗能能力,从而显著减轻两结构模型的地震响应。同时,研究还指出了进行阻尼装置设计时应该注意的一些问题。  相似文献   

5.
Floor isolation system (FIS) achieving very small floor accelerations has been used to ensure human comfortability or protect important equipments in buildings. Tuned mass damper (TMD) with large mass ratios has been demonstrated to be robust with respect to the changes in structural properties. This paper presents the concept of a TMD floor vibration control system, which takes advantages of both the FIS and TMD. Such a system is called ‘TMD floor system’ herein. The TMD floor system (TMDFS) in which building floors serve as TMDs can achieve large mass ratio without additional masses. Furthermore, multiple TMD floors installed in a building can control multimode vibrations. Then, an optimal design process, where the objective function is set as the maximum magnitude of the frequency response functions of inter‐storey drifts, is proposed to determine the TMD floor parameters. Additionally, the multimode approach is applied to determine the optimal locations of TMD floors if not all of the floors in a building can serve as TMDs. In addition to the numerical simulations, a scaled model shaking table experiment is also conducted. Both the numerical and experimental results show that the absolute accelerations of the TMD floors are smaller than those of the main structural storeys, which indicates the TMDFS maintains the merit of FIS while greatly reducing seismic responses of main structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A fuzzy‐logic control algorithm, based on the fuzzification of the MR damper characteristics, is presented for the semiactive control of building frames under seismic excitation. The MR damper characteristics are represented by force–velocity and force–displacement curves obtained from the sinusoidal actuation test. The method does not require any analytical model of MR damper characteristics, such as the Bouc‐Wen model, to be incorporated into the control algorithm. The control algorithm has a feedback structure and is implemented by using the fuzzy‐logic and Simulink toolboxes of MATLAB. The performance of the algorithm is studied by using it to control the responses of two example buildings taken from the literature—a three‐storey building frame, in which controlled responses are obtained by clipped‐optimal control and a ten‐storey building frame. The results indicate that the proposed scheme provides nearly the same percentage reduction of responses as that obtained by the clipped‐optimal control with much less control force and much less command voltage. Position of the damper is found to significantly affect the controlled responses of the structure. It is observed that any increase in the damper capacity beyond a saturation level does not improve the performance of the controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The performance aspects of a wireless ‘active’ sensor, including the reliability of the wireless communication channel for real‐time data delivery and its application to feedback structural control, are explored in this study. First, the control of magnetorheological (MR) dampers using wireless sensors is examined. Second, the application of the MR‐damper to actively control a half‐scale three‐storey steel building excited at its base by shaking table is studied using a wireless control system assembled from wireless active sensors. With an MR damper installed on each floor (three dampers total), structural responses during seismic excitation are measured by the system's wireless active sensors and wirelessly communicated to each other; upon receipt of response data, the wireless sensor interfaced to each MR damper calculates a desired control action using an LQG controller implemented in the wireless sensor's computational core. In this system, the wireless active sensor is responsible for the reception of response data, determination of optimal control forces, and the issuing of command signals to the MR damper. Various control solutions are formulated in this study and embedded in the wireless control system including centralized and decentralized control algorithms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the effectiveness of different design solutions for tuned mass dampers (TMD) applied to high‐rise cross‐laminated (X‐Lam) timber buildings as a means to reduce the seismic accelerations was investigated. A seven‐storey full‐scale structure previously tested on shaking table was used as a reference. The optimal design parameters of the TMDs, i.e. damping and frequency ratios, were determined by using a genetic algorithm on a simplified model of the reference structure, composed by seven masses each representing one storey. The optimal solutions for the TMDs were then applied to a detailed finite element model of the seven‐storey building, where the timber panels were modelled with shell elements and the steel connectors with linear spring. By comparing the numerical results of the building with and without multiple TMDs, the improvement in seismic response was assessed. Dynamic time‐history analyses were carried out for a set of seven natural records, selected in accordance with Eurocode 8, on the simplified model, and for Kobe earthquake ground motion on the detailed model. Results in terms of acceleration reduction for different TMD configurations show that the behaviour of the seven‐storey timber building can be significantly improved, especially at the upper storeys. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Although modern seismic codes have undoubtedly led to safer structures, the seismic vulnerability of metropolitan areas is unavoidably governed by that of older buildings, which constitute the vast majority of the current building stock. Quite alarmingly, even relatively moderate intensity earthquakes have been proven capable of challenging their structural integrity, leading to severe damage or collapse. Therefore, there is an urgent need to assess the vulnerability of existing structures and to evaluate the efficiency of novel retrofit techniques. This paper studies experimentally the seismic performance of an existing three‐storey building, retrofitted through addition of shear walls. Emphasis is placed on the foundation of the shear walls, and two design alternatives are comparatively assessed: (a) conventional design according to current seismic codes and (b) ‘rocking isolation’ by reducing the size of the foundation. A series of reduced‐scale shaking table tests are conducted at the Laboratory of Soil Mechanics of the National Technical University of Athens. The physical model encompasses the structural system, along with the foundations, and the soil. The nonlinearity of structural members is simulated through specially designed and carefully calibrated artificial plastic hinges. The vulnerability of the original structure is confirmed, as it is found to collapse with a soft‐storey mechanism when subjected to moderate intensity shaking. The conventionally retrofitted structure is proven capable of sustaining larger intensity shaking, and the rocking‐isolated structure is shown to offer increased safety margins. Thanks to its inherent self‐centering mechanism, the rocking system is characterized by reduced permanent drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The paper deals with the proposal and the experimental validation of a novel dissipative bracing system for the seismic protection of structures; compared with other similar systems, it is characterized by smaller size and weight, which makes it easier to move and to install, as well as particularly suitable to be inserted in light‐framed structures (e.g. steel structures of industrial plants). The proposed system consists of an articulated quadrilateral with steel dissipaters inserted, to be connected by tendons to frame joints; the prototypes have been designed and realized for the seismic protection of a two‐storey, large‐scale, steel frame, specially designed for shaking‐table tests. The paper, after an illustration of the system, and of its design and behaviour, presents the shaking‐table tests carried out. The experimental results have fully validated the proposed system, showing its good performance in controlling the seismic response of framed structures. A numerical non‐linear model, set up and validated on the basis of the physical tests, has been used to help interpreting the experimental results, but also to perform parametrical studies for investigating the influence of the design parameters on the performance of the control system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Active energy dissipation is proved to be very effective for abating seismic effects on buildings. The implementation of this concept in seismic design of buildings is studied by response simulations of a single storey building subjected to earthquake motion. Active energy dissipaters can be installed as part of the building lateral load bracing, and they regulate the strength and stiffness of the bracing during the building's response to the seismic events. The energy is dissipated when the bracing load exceeds the axial strength provided by the dissipater, and the bracing telescopes in and out. The design parameters of active energy dissipaters are described using the simulated response of a single storey building to ground pulse and harmonic ground excitation. The feasibility of the energy dissipater is demonstrated by the development and construction of a full-scale prototype device called an Active Slip Bracing Device (ASBD). The device utilizes Coulomb friction. The active characteristics are implemented by a computer controlled clamping mechanism on the friction interface. The ASBD's control of the strength and stiffness is investigated.  相似文献   

14.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Health care facilities may undergo severe and widespread damage that impairs the functionality of the system when it is stricken by an earthquake. Such detrimental response is emphasized either for the hospital buildings designed primarily for gravity loads or without employing base isolation/supplemental damping systems. Moreover, these buildings need to warrant operability especially in the aftermath of moderate‐to‐severe earthquake ground motions. The provisions implemented in the new seismic codes allow obtaining adequate seismic performance for the hospital structural components; nevertheless, they do not provide definite yet reliable rules to design and protect the building contents. To date, very few experimental tests have been carried out on hospital buildings equipped with nonstructural components as well as building contents. The present paper is aimed at establishing the limit states for a typical health care room and deriving empirical fragility curves by considering a systemic approach. Toward this aim, a full scale three‐dimensional model of an examination (out patients consultation) room is constructed and tested dynamically by using the shaking table facility of the University of Naples, Italy. The sample room contains a number of typical medical components, which are either directly connected to the panel boards of the perimeter walls or behave as simple freestanding elements. The outcomes of the comprehensive shaking table tests carried out on the examination room have been utilized to derive fragility curves based on a systemic approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the results of an experimental and analytical/computational study of the performance of multi‐unit particle dampers with an MDOF system. A series of shaking table tests of a three‐storey steel frame with the particle damper system were carried out to evaluate the performance of the system and to verify the analysis method. An analytical solution based on the discrete element method is also presented. A comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system under earthquake excitations can be obtained. These results also indicate that the excitation characterization influences the performance of the particle damper system, for example, particle dampers have good performance in reducing the seismic response of structures and particle movements of plug flow pattern can yield good vibration attenuation effects. It is shown that by using properly designed multi‐unit particle dampers, a lightly damped primary system can achieve a reasonable reduction in its response, with a small weight penalty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Dynamic characteristic and harmonic response of adjacent buildings connected by fluid damper were experimentally investigated using model buildings and fluid damper. Two building models were constructed as two three-storey shear buildings of different natural frequencies. Model fluid damper connecting the two buildings was designed as linear viscous damper of which damping coefficient could be adjusted. The two buildings without fluid dampers connected were first tested to obtain their individual dynamic characteristics and responses to harmonic excitation. The tests were then carried out to determine modal damping ratios of the adjacent buildings connected by the fluid damper of different damping coefficients and at different locations. Optimal damper damping coefficient and location for achieving the maximum modal damping ratio were thus found. The measured modal damping ratios and harmonic responses of the building-fluid damper system were finally compared with those from the individual buildings. The comparison showed that the fluid damper of proper parameter could significantly increase the modal damping ratio and tremendously reduce the dynamic response of both buildings. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A new type of energy‐dissipated structural system for existing buildings with story‐increased frames is presented and investigated in this paper. In this system the sliding‐friction layer between the lowest increased floor of the outer frame structure and the roof of the original building is applied, and energy‐dissipated dampers are used for the connections between the columns of the outer frame and each floor of the original building. A shaking table test is performed on the model of the system and the simplified structural model of this system is given. The theory of the non‐classical damping approach is introduced to the calculation analyses and compared with test results. The results show that friction and energy‐dissipated devices are very effective in reducing the seismic response and dissipating the input energy of the model structure. Finally, the design scheme and dynamic time‐history analyses of an existing engineering project are investigated to illustrate the application and advantages of the given method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The effectiveness of seismic isolation in protecting structural and non‐structural elements from damage has been assessed in an extensive programme of shaking‐table tests, carried out on four identical 1/3.3‐scale, two‐dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber‐based, (ii) steel‐based, (iii) shape memory alloy (SMA)‐based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base‐isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non‐structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking‐table tests on similar fixed‐base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号