首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
New U–Pb SHRIMP zircon ages combined with geochemical and isotope investigation in the Sierra de Maz and Sierra de Pie de Palo and a xenolith of the Precordillera basement (Ullún), provides insight into the identification of major Grenville-age tectonomagmatic events and their timing in the Western Sierras Pampeanas. The study reveals two contrasting scenarios that evolved separately during the 300 Ma long history: Sierra de Maz, which was always part of a continental crust, and the juvenile oceanic arc and back-arc sector of Sierra de Pie de Palo and Ullún. The oldest rocks are the Andino-type granitic orthogneisses of Sierra de Maz (1330–1260 Ma) and associated subalkaline basic rocks, that were part of an active continental margin developed in a Paleoproterozoic crust. Amphibolite facies metamorphism affected the orthogneisses at ca. 1175 Ma, while granulite facies was attained in neighbouring meta-sediments and basic granulites. Interruption of continental-edge magmatism and high-grade metamorphism is interpreted as related to an arc–continental collision dated by zircon overgrowths at 1170–1230 Ma. The next event consisted of massif-type anorthosites and related meta-jotunites, meta-mangerites (1092 ± 6 Ma) and meta-granites (1086 ± 10 Ma) that define an AMCG complex in Sierra de Maz. The emplacement of these mantle-derived magmas during an extensional episode produced a widespread thermal overprint at ca. 1095 Ma in neighbouring country rocks. In constrast, juvenile oceanic arc and back-arc complexes dominated the Sierra de Pie de Palo–Ullún sector, that was fully developed ca. 1200 Ma (1196 ± 8 Ma metagabbro). A new episode of oceanic arc magmatism at ~1165 Ma was roughly coeval with the amphibolite high-grade metamorphism of Sierra de Maz, indicating that these two sectors underwent independent geodynamic scenarios at this age. Two more episodes of arc subduction are registered in the Pie de Palo–Ullún sector: (i) 1110 ± 10 Ma orthogneisses and basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.  相似文献   

2.
The Storø greenstone belt, southern West Greenland, consists of thrust-imbricated slices of Mesoarchean (>3060 Ma) and Neoarchean (ca. 2800 Ma) mafic to ultramafic volcanic rocks, volcaniclastic sediments, and gabbro–anorthosite associations. The belt underwent polyphase metamorphism at upper amphibolite facies conditions between 2650 and 2600 Ma. The contacts between the Mesoarchean and Neoarchean volcanic rocks, and surrounding Eoarchean to Neoarchean tonalite–trondhjemite–granodiorite (TTG) gneisses are tectonic and typically bounded by high-grade mylonites. Regardless of age, the volcanic rocks are dominated by mafic amphibolites with a tholeiitic basalt composition, near-flat to slightly enriched light rare earth element (LREE) patterns (La/Smcn = 0.91–1.48), relatively flat to slightly depleted heavy-REE (HREE) (Gd/Ybcn = 1.0–1.28), and pronounced negative Nb–Ta anomalies (Nb/Nb* = 0.34–0.73) on chondrite- and primitive mantle-normalized diagrams. These geochemical characteristics are consistent with subduction zone geochemical signatures and partial melting of a shallow (<80 km) mantle source free of residual garnet. There is no geochemical evidence for contamination by older continental crust. The overall field and geochemical characteristics suggest that the thrust-imbricated basaltic rocks were erupted in intra-oceanic subduction zone settings. Sedimentary rocks are represented by garnet–biotite and quartzitic gneisses. They are characterized by relatively high contents of transition metal (Ni = 10–154 ppm; Cr = 7–166 ppm) and enriched LREE patterns (La/Smcn = 1.38–3.79). These geochemical characteristics suggest that the sedimentary rocks were derived from erosion of felsic to mafic igneous source rocks. Collectively, the structural and lithogeochemical characteristics of the Storø greenstone belt are consistent with collision (accretion) of unrelated Archean volcanic rocks formed in supra-subduction zone geodynamic settings. Accordingly, the Mesoarchean and Neoarchean rock record of the Storø greenstone belt may well be explained in terms of modern-style plate tectonic processes.  相似文献   

3.
The crystalline basement of the Sierra de San Luis, which belongs to the Eastern Sierras Pampeanas in central Argentina, consists of three main units: (1) Conlara, (2) Pringles, and (3) Nogolí metamorphic complexes. In the Pringles Metamorphic Complex, mafic–ultramafic bodies occur as discontinuous lenses along a narrow central belt concordant with the general NNE–SSW structural trend. A metamorphic gradient from granulite to greenschist facies is apparent on both sides of the mafic–ultramafic bodies. This work focuses on the characteristics of the mylonitization overprinted on the mafic–ultramafic intrusives in the Pringles Metamorphic Complex and their gneissic–migmatitic surroundings, both previously metamorphosed within the granulite facies. Petrogenetic grid and geothermobarometry applied to the paragenesis equilibrated during the mylonitic event, together with mineral deformation mechanisms, indicate that mafic and adjacent basement mylonites developed under upper amphibolite transitional to granulite facies metamorphic conditions at intermediate pressures (668–764 °C, 6.3–6.9 kbar, 0.3 < XCO2 < 0.7). However, the following mylonitic assemblages can be distinguished from the external limits of the Pringles Metamorphic Complex to its center: lower amphibolite facies  middle amphibolite facies  upper amphibolite transitional to granulite facies. Geothermobarometry applied to mylonitic assemblages indicate a temperature gradient from 555 °C to 764 °C and pressures of 6–7 kbar for the mylonitic event. This event is considered to have developed on a preexisting temperature gradient attributed to the intrusion of mafic–ultramafic bodies. The concentration of sulfides in mylonitic bands and textural relationships provide evidence of remobilization of primary magmatic sulfides of the mafic–ultramafic rocks (+PGM) during the mylonitic event. A lower-temperature final overprint produced brittle fracturing and localized retrogression on mafic–ultramafic minerals and ores by means of a water-rich fluid phase, which gave rise to a serpentine + magnetite ± actinolite association. Concordantly in the adjacent country rocks, fluids channeled along preexisting mylonitic foliation planes produced local obliteration of the mylonitic texture by a randomly oriented replacement of the mylonite mineralogy by a chlorite + sericite/muscovite + magnetite assemblage. Observed mineral reactions combined with structural data and geothermobarometry suggest a succession of tectonometamorphic events for the evolution of the Pringles Metamorphic Complex of Sierra de San Luis, developed in association with a counterclockwise PTd path. The most likely geological setting for this type of evolution is a backarc basin, associated with east-directed Famatinian subduction initiated in Mid-Cambrian times and closed during the collision of the allochthonous Precordillera terrane in Mid-Ordovician times.  相似文献   

4.
《Gondwana Research》2013,23(3-4):992-1008
A recently discovered granitic intrusion at Cerro La Gloria in western Sierra de Famatina (NW Argentina) is representative of sub- to mid-alkaline Carboniferous magmatism in the region. The main rock type consists of microcline, quartz and plagioclase, with amphibole, magnetite, ilmenite, biotite, epidote, zircon, allanite and sphene as accessory minerals. We report a U–Pb zircon SHRIMP age for the pluton of 349 ± 3 Ma (MSWD = 1.1), i.e., Tournaisian. Whole-rock chemical composition and Nd isotope analyses are compatible with an origin by melting of older mafic material in the lower crust (εNdt between − 0.58 and + 0.46 and TDM values of about 1.1 Ga). The pluton is intruded by penecontemporaneous to late alkaline mafic dykes that are classified as back-arc basalts. Coeval, Early Carboniferous A-type granites occur farther east in the Sierras Pampeanas, probably generated during lithospheric stretching. Overall, the Early Carboniferous granitic rocks show a west-to-east mineralogical and isotopic zonation indicating that magma genesis involved a greater contribution of juvenile material of mantle character to the west. Based on the observed patterns of geochronology, geochemistry and field relationships we suggest that A-type magma genesis in the Eastern Sierras Pampeanas was linked to an Andean-type margin where the lithospheric mantle played a role in its generation.  相似文献   

5.
The geology of Northern Vietnam offers critical clues on the convergence history between the South China and Indochina blocks. We constrain the tectonic evolution of the South China and Indochina blocks using geochemical, mineral chemical and geochronological data collected from mafic–ultramafic rocks exposed in the Cao Bang area, Northeastern Vietnam. These rocks show significant enrichment in large ionic lithophile elements (LILEs) such as Cs, Rb, Ba, Th, U, and Pb and depletion in high field strength elements (HFSEs) such as Nb, Ta, Zr, and Ti showing [Nb/La]N between 0.28–0.41, [La/Yb]N = 3.94–10.00 and Zr/Y = 2.0–4.4. These geochemical features as well as the petrology and mineral chemistry of the Cao Bang mafic–ultramafic magmas are comparable to those of magmatic complexes formed in a back-arc environment. The basalts yield Rb–Sr whole rock ages of 263 ± 15 Ma, that are consistent with the zircon U–Pb and K–Ar ages reported in previous studies from the same area. The spatial and temporal distribution of the arc magmas within the Indochina block and along the southern margin of the South China block suggest that the Permo-Triassic mafic–ultramafic magmas formed during a tectonic event that is different from the subduction and collision event between the Indochina and South China blocks.  相似文献   

6.
《Gondwana Research》2014,25(2):585-613
The Belomorian eclogite province was repeatedly affected by multiple deformation episodes and metamorphism under moderate to high pressure. Within the Gridino area, high pressure processes developed in a continental crust of tonalite–trondhjemite–granodiorite (TTG) affinity that contains mafic pods and dykes, in which products of these processes are most clearly evident. New petrological, geochemical and geochronological data on mafic and felsic rocks, including PT-estimates, mineral chemistry, bulk rock chemistries, REE composition of the rocks and zircons and U–Pb and Lu–Hf geochronology presented in the paper make it possible to reproduce the magmatic and high-grade metamorphic evolution in the study area. In the framework of the extremely long-lasting geologic history recorded in the Belomorian province (3–1.7 Ga), new geochronological data enabled us to define the succession of events that includes mafic dyke emplacement between 2.87 and 2.82 Ga and eclogite facies metamorphism of the mafic dykes between ~ 2.82 and ~ 2.72 Ga (most probably in the time span of 2.79–2.73 Ga). The clockwise PT path of the Gridino association crosses the granulite- and amphibolite-facies PT fields during the time period of 2.72 Ga to 2.64 Ga. A special aspect of this work concerns the superposed subisobaric heating (thermal impact) with an increase in the temperature to granulite facies conditions at 2.4 Ga. Later amphibolite facies metamorphism occurred at 2.0–1.9 Ga. Our detailed geochronological and petrological studies reveal a complicated Mesoarchaean–Palaeoproterozoic history that involved deep subduction of the continental crust and a succession of plume-related events.  相似文献   

7.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

8.
The high-grade metamorphic terrane in the Badu region along the northeastern Cathaysia Block in South China preserves retrograded eclogites and mafic granulites. Here we present the petrology, mineral phase equilibria and P-T conditions based on pseudosection computations, as well as zircon U-Pb ages of these rocks. Mineral textures and reaction relationships suggest four metamorphic stages for the retrograded eclogite as follows: (1) eclogite facies stage (M1), (2) clinopyroxene retrograde stage (M2), (3) amphibole retrograde stage (M3), and (4) chlorite retrograde stage (M4). For the mafic granulite, three stages are identified as: (1) plagioclase-absent stage (M1), (2) granulite facies stage (M2) and (3) amphibolite facies stage (M3). Metamorphic evolution of both of the rock types follows clockwise P-T path. Conventional geothermometers and geobarometers in combination with phase equilibria modelling yield metamorphic P-T conditions for each metamorphic stage for the eclogite as 500–560 °C, 23–24 kbar (M1), 640–660 °C, 14–16 kbar (M2), 730–750 °C, and 11–13 kbar (M3). The chlorite retrograde stage (M4) is inferred to have occurred at lower amphibolite to greenschist facies conditions. Phase equilibria modelling of the mafic granulite shows P-T conditions for each metamorphic stage as 600–720 °C, > 13 kbar (M1) and 860–890 °C, 5–6 kbar (M2) and M3 at amphibolite facies conditions. LA-ICPMS zircon U-Pb dating and trace element analysis show that the high pressure metamorphism occurred at 245–251 Ma. Protolith age of the mafic granulite is 997 Ma, similar to that of the mafic to ultramafic rocks widely distributed in the Cathaysia Block and also along the Jiangnan belt. Subduction of ancient oceanic lithospheric materials (or crustal thickening) during Mesozoic and formation of eclogites suggest that the Cathaysia Block was perhaps in the Tethyan oceanic domain at this time. The granulite formation might have been aided by Mesozoic mafic magma underplating associated with lithospheric delamination, heating and retrogression of the eclogite accompanied by rapid uplift.  相似文献   

9.
This paper investigates the age, PT conditions and kinematics of Karakorum Fault (KF) zone rocks in the NW part of the Himalaya–Karakorum belt. Granulite to greenschist facies assemblages were developed within the KF zone during strike-slip shearing. The granulites were formed at high temperature (800 °C, 5.5 kbar), were subsequently retromorphosed into the amphibolite facies (700–750 °C, 4–5 kbar) and the greenschist facies (350–400 °C, 3–4 kbar). The Tangtse granite emplaced syn-kinematically at the contact between a LT and the HT granulite facies. Intrusion occurred during the juxtaposition of the two units under amphibolite conditions. Microstructures observed within the Tangtse granite exhibit a syn-magmatic dextral S–C fabric. Compiled U–Pb and Ar–Ar data show that in the central KF segment, granulite facies metamorphism occurred at a minimum age of 32 Ma, subsequent amphibolite facies metamorphism at 20–18 Ma. Further shearing under amphibolite facies (650–500 °C) was recorded at 13.6 ± 0.9 Ma, and greenschist-facies mica growth at 11 Ma. These data give further constrains to the age of initiation and depth of the Karakorum Fault. The granulite-facies conditions suggest that the KF, accommodating the lateral extrusion of Tibet, could be at least a crustal or even a Lithosphere-scale shear zone comparable to other peri-Himalayan faults.  相似文献   

10.
A major Mesoproterozoic paleo-plate boundary in the southwestern Amazonian Craton, the Guaporé Suture Zone, is investigated by U–Pb zircon geochronology, Sr–Nd isotope geochemistry and aeromagnetic data. This suture zone is constituted dominantly by ophiolitic mafic–ultramafic rocks of the Trincheira Complex, and minor proportion of tonalites of the Rio Galera and São Felipe complexes, Colorado Complex, amphibolites of the Rio Alegre Terrane and syn- to late-kinematic mafic to felsic plutonic rocks. The ophiolitic Trincheira Complex formed during an accretionary phase from 1470 to 1430 Ma and was overprinted by upper amphibolite–granulite facies metamorphism during the collisional phase of the Ectasian followed by syntectonic emplacement of gabbro and granite plutons (1350–1340 Ma). The ophiolites were intruded by syntectonic tonalitic–plagiogranitic plutons ca. 1435 Ma. Mafic–ultramafic rocks of the Trincheira ophiolites show moderate to highly positive initial epsilon Nd (t = 1.46 Ga) values (+2.6 to +8.8) and very low initial 87Sr/86Sr ratio (0.7013–0.7033). It is suggested that these magmas originated from a depleted mantle source in an island-arc–back-arc setting. The identification of a fossil ophiolite in the Guaporé Suture Zone early as 1470–1435 Ma and later collisional phase, as late as 1350 Ma, marks the impingement of the proto-Amazonian Craton against the Paragua Block, before the formation of the Rodinia supercontinent. The results provide important insights into the geodynamic history of the SW Amazonian Craton, with evidence for both accretionary orogen and subduction of oceanic lithosphere in the Mesoproterozoic, and provide information that allows other workers to evaluate the configuration of supercontinents.  相似文献   

11.
Structural, metamorphic and isotopic data obtained from the Nogoli Metamorphic Complex of western Sierra de San Luis indicate that the Early Paleozoic Famatinian Orogeny overprinted an already structured and metamorphosed older basement. The older geological features are relict NW trending fabric associated with high-grade (amphibolite facies) regional metamorphism preserved within thin strips of schists and paragneisses and in the core of mafic to ultramafic lenses. Arc magmatism, medium P (Barrovian type)/high T (amphibolite to granulite facies) regional metamorphism and penetrative NNE to NE trending foliation are related to the building of the Famatinian orogenic belt. The P-T conditions of the Famatinian prograde metamorphism reached a pressure peak of ca. 8 kb, with a thermal peak from -750°C up to -820°C. U-Pb conventional and chemical dating and Ar-Ar plateau ages constrain the peak of the main orogenic phase related to the Famatinian belt to 470–457 Ma (Early to Mid-Ordovician). Greenschist facies retrograde metamorphism closely associated with shear zones and secondary Ar-Ar plateau and Sm-Nd ages suggest that a late to post-orogenic phase of the Famatinian belt was active at least since -445 Ma. This phase continued during the Silurian to Late Devonian times through multiple reactivation of early shear zones. The Famatinian Orogeny reset a previous thermal history and therefore, the timing of the relict fabric could not be constrained conclusively with radiometric dates. Despite this difficulty, a range of 520 to 490 Ma suggests some inheritance from Pampean events registered by the older NW-SE fabric. The Early to Mid-Ordovician regional metamorphism and ductile deformation of the western Sierra de San Luis is interpreted as the orogenic effects of the collision of the allochthonous Cuyania terrane with the autochthonous proto-Pacific margin of Gondwana during the Famatinian Orogeny.  相似文献   

12.
Different continental collision belts show contrasting metamorphic trend along their length, including the distribution of extreme metamorphism; i.e., ultrahigh-pressure (>100 km depth) and ultrahigh-temperature (900–1150 °C) metamorphisms. However, no previous study has succeeded in explaining these trends. The present study investigates the main factors that control the metamorphic trends along collision belts, with reference to the Dabie–Hongseong collision belt between the North and South China blocks and the Himalayan collision belt between the Indian and Asian blocks. In the Dabie–Hongseong collision belt, collision began in the east before 245 Ma and propagated westward until ca. 220 Ma. In the eastern part of the belt, the amount of oceanic slab that subducted before collision was insufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism; however, ultrahigh-pressure metamorphism occurred in the western part of the belt. Slab break-off also migrated from east to west, with a westward increase in the depth of break-off (from ca. 10 kbar in the west to ca. 35 kbar in the east). These lateral trends along the belt resulted in a westward change from ultrahigh-temperature (915–1160 °C, 9.0–10.6 kbar) to high-pressure (835–860 °C, 17.0–20.9 kbar) and finally ultrahigh-pressure metamorphism (680–880 °C, 30–40 kbar). In the Himalayan collision belt, collision started from the west at 50 Ma and propagated eastward. The amount of oceanic slab subducted prior to collision was sufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism in the west, but not in the east. Slab break-off started in the west at ca. 46 Ma and propagated eastward, with an eastward decrease in the depth of slab break-off from 27–29 to 17–18 kbar. Consequently, the metamorphic trend along the belt changes eastward from ultrahigh-pressure (690–750 °C, 27–29 kbar) to high-pressure and finally high-pressure granulite facies metamorphism (890 °C, 17–18 kbar). The differences in metamorphic trend between the Dabie–Hongseong and Himalayan collision belts reflect the amount of oceanic crust subducted prior to collision and the depth and timing of slab break-off along each belt.  相似文献   

13.
The Tartoq Group, located in SW Greenland, consists of supracrustal rocks of mainly tholeiitic basaltic composition, including pillow lavas, sills/dykes and gabbros, as well as ultramafic rocks. Metamorphic grade ranges from greenschist facies to granulite facies. The Tartoq Group crops out as a series of blocks and slivers that are imbricated with originally intrusive Mesoarchaean TTG orthogneisses. The supracrustal rocks form part of a SE vergent fold and thrust belt consistent with the imbrication of TTG gneisses and supracrustal rocks along a convergent margin. LA-ICP-MS U–Pb zircon dating of an intrusive TTG sheet yields a minimum age of 2986 ± 4 Ma for the Tartoq Group. This age is consistent with MC-ICP-MS Lu–Hf and Sm–Nd isotopic whole-rock data for mafic samples from different blocks of the Tartoq Group, which yield errorchron ages of 3189 ± 65 Ma and 3068 ± 220 Ma, respectively. The mafic supracrustal rocks of the Tartoq Group have chondrite-normalized REE patterns with LaCN/SmCN of 0.67–1.96 and rather flat primitive mantle-normalized multi-element patterns, except for scattered LILE contents, and generally negative Nb-anomalies with Nb/Nb* of 0.26–1.31. Th/Yb varies between 0.06 and 0.47 and Nb/Yb between 0.45 and 4.4 indicative of an arc affinity when compared to rocks from modern settings. The similar geochemistry of the different lithological units, together with their coeval formation, as evident from trace element geochemical trends, supports a co-magmatic origin for the rock assemblage and their formation as imbricated relics of oceanic crust. Accordingly, we propose that the Tartoq Group represents remnants of Mesoarchaean oceanic crust, which formed in a suprasubduction zone geodynamic environment.  相似文献   

14.
The collision of oceanic arcs with continents is a common plate tectonic process in the Phanerozoic, but its recognition in the Precambrian is hampered by deformation and metamorphism. The Rio Capim volcanic–plutonic–sedimentary belt lies in sharp tectonic contact with Archaean rocks of the Uauá block in the northern part of the São Francisco craton. Field relationships and high-precision geochronology indicated that the Rio Capim basalts, gabbros, diorites, and dacites were emplaced approximately at 2148–2143 Ma, and later intruded by 2128 Ma-old diorite to tonalite plutons. All rocks were metamorphosed under amphibolite to granulite facies conditions mainly between 2080 Ma and 2070 Ma, but deformation may have lasted until about 2040 Ma as estimated from syn-deformation zircon and titanite grains. The association of basalt, andesite, dacite, and their plutonic counterparts, combined with their positive εNd(t) values and incompatible trace element geochemical signatures similar to island arc magmas, support the proposition that the Rio Capim belt was a Palaeoproteorozoic intra-oceanic arc sequence that collided with a continent, of which the Mesoarchaean Uauá block is a remnant. The implications for the regional evolution and metallogenesis are also discussed.  相似文献   

15.
The Palaeozoic to Mesozoic igneous and metamorphic basement rocks exposed in the Mérida Andes of Venezuela and the Santander Massif of Colombia are generally considered to define allochthonous terranes that accreted to the margin of Gondwana during the Ordovician and the Carboniferous. However, terrane sutures have not been identified and there are no published isotopic data that support the existence of separate crustal domains. A general paucity of geochronological data led to published tectonic reconstructions for the evolution of the northwestern corner of Gondwana that do not account for the magmatic and metamorphic histories of the basement rocks of the Mérida Andes and the Santander Massif. We present new zircon U–Pb (ICP-MS) data from 52 igneous and metamorphic rocks, which we combine with whole rock geochemical and Pb isotopic data to constrain the tectonic history of the Precambrian to Mesozoic basement of the Mérida Andes and the Santander Massif. These data show that the basement rocks of these massifs are autochthonous to Gondwana and share a similar tectono-magmatic history with the Gondwanan margin of Peru, Chile and Argentina, which evolved during the subduction of oceanic lithosphere of the Iapetus Ocean. The oldest Palaeozoic arc magmatism is recorded at ~ 500 Ma, and was followed shortly by Barrovian metamorphism. Peak metamorphic conditions at upper amphibolite facies are recorded by anatexis at ~ 477 Ma and the intrusion of synkinematic granitoids until ~ 472 Ma. Subsequent retrogression resulted from localised back-arc or intra-arc extension at ~ 453 Ma, when volcanic tuffs and interfingered sedimentary rocks were deposited over the amphibolite facies basement. Continental arc magmatism dwindled after ~ 430 Ma and terminated at ~ 415 Ma, coevally with most of the western margin of Gondwana. After Pangaea amalgamation in the Late Carboniferous to Early Permian, a magmatic arc developed on its western margin at ~ 294 Ma as a result of subduction of oceanic crust of the palaeo-Pacific ocean. Intermittent arc magmatism recorded between ~ 294 and ~ 225 Ma was followed by the onset of the Andean subduction cycle at ~ 213 Ma, in an extensional regime. Extension was accompanied by slab roll-back which led to the migration of the arc axis into the Central Cordillera of Colombia in the Early Jurassic.  相似文献   

16.
Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10–11 kbar and 450–650 °C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 °C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic–ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, lherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24–22 kbar and 1060–1040 °C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm–Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic–ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite–trondhjemite–granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a > 90 km × 40 km-size slab of continental crust containing mafic–ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic–ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean.  相似文献   

17.
《Chemical Geology》2007,236(1-2):27-41
The Ogcheon metamorphic belt consists primarily of metasedimentary and metavolcanic rocks that have experienced polyphase tectonometamorphism since the Neoproterozoic. Peak metamorphism reaching up to lower-amphibolite facies produced ubiquitous garnet porphyroblasts in pelitic and mafic schists. To determine the timing of their formation, step-leaching experiments were undertaken for five garnet fractions separated from pelitic and quartz-hornblende-garnet schists. The U–Pb ages from three samples are identical within 2σ errors, ranging from 291 ± 41 Ma to 276 ± 29 Ma. The quasi-linearity of leachates in 238U–206Pb and 208Pb–206Pb diagrams suggests that U and Pb are released from a single mineral phase and that minor chemical fractionation between U and Pb may have occurred during the leaching experiment. Deviations of residues and bulk garnet fractions from the linear trend are attributed to partial dissolution of refractory inclusions of detrital zircon. Th/U ratios of leachates are in the range of 3.4–12, much higher than those of pure garnet, and suggest the contribution of allanite. Negative relationships in the Sm–Nd isochron diagram and similar 147Sm/144Nd ratios between whole rock and garnet corroborate the influence of light rare earth element (LREE)-rich allanite on the Sm–Nd isotopic system. Simple mass-balance calculations indicate that only a trace amount (0.35 modal%) of allanite inclusions should govern the U–Th–Pb systematics of garnet. Petrographic evidence together with the consistency in U–Pb ages suggests that allanite is a product of prograde metamorphism. Thus, peak metamorphism responsible for the growth of allanite-bearing garnet porphyroblasts in the Ogcheon metamorphic belt is best estimated to be Early Permian.  相似文献   

18.
《Gondwana Research》2015,28(4):1474-1486
Mafic rocks similar to those of the Gangdese belt have been poorly reported in the Nabang area (SW Yunnan Province in SW China) of the Eastern Himalayan Syntaxis. This led to a widely-accepted assumption that Early Eocene mafic rocks are absent in Nabang. This paper reports new zircon U–Pb, Lu–Hf isotopic, whole-rock elemental and Sr–Nd isotopic data for the recently identified Tongbiguan and Jinzhuzhai metagabbroic plutons. Our data show that the two mafic plutons crystallized at 53.2 ± 0.4 Ma and 53.6 ± 0.7 Ma, respectively, with zircon in-situ εHf(t) values ranging from − 3.1 to + 4.9. Our data confirm the presence of Early Eocene mafic rocks in Nabang, contemporaneous with the major magmatic flare-ups of ~ 52 Ma in South Tibet. The rocks show high-K calc-alkaline basalt and basaltic andesite composition. They are characterized by subparallel spiky patterns with enrichment in LILEs, depletion in HFSEs and P–Ti negative anomalies. They show (Nb/La)n = 0.21–0.63, Ce/Pb = 2.99–9.91 and Nb/U = 5.2–14.1, along with high 87Sr/86Sr(t) ratios of 0.7061–0.7077 and εNd(t) values of − 3.4 to − 5.6. Such geochemical signatures are similar to those of the synchronous Dangxung gabbroic and Yangbajing ultrapotassic rocks. Their least-contaminated samples can petrogenetically be attributed to input of slab-derived fluid into the lithospheric mantle. In conjunction with other available data, the mafic suite can be geochronologically and geochemically correlated to those in South Lhasa and are probably the equivalents of the Gangdese southeastward extension. Their formation might tectonically be related to slab rollback in response to the decreasing convergence rate. The termination of the Neotethyan subduction in SW Yunnan might be later than ~ 52 Ma, identical to that in South Tibet.  相似文献   

19.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

20.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号