首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of Geodynamics》2010,49(3-5):325-330
The network of superconducting gravimeters (SG) of the ‘Global Geodynamics Project’ (GGP) offers the unique opportunity to supplement and validate the gravity field variations derived from the GRACE satellite mission. Because of the different spatial and temporal resolutions of the gravity data a combination of all datasets can be used to retrieve a maximum of information regarding mass transfers especially related to hydrology which is deployable as constraint for hydrological modelling.For a consistent combination of the datasets the gap between terrestrial data of superconducting and absolute gravimeters (AG) and from satellite data has to be bridged. A successful combination of SG and AG data could be realized for several stations which resulted in time series of the highest accuracy and long-term stability.In principle, the same reductions applied to GRACE data have to be taken into account for the terrestrial data. The separation of local hydrological effects in SG observations is crucial for the comparison with satellite-derived gravity data. It is shown that even for stations with a hydrological challenging situation such as Moxa/Germany local hydrology-induced effects can be successfully modelled.Currently, the study focuses on Europe with its dense and long-term observation network. Regarding the consistency of the SG gravity variations they are representative for a larger region. From a comparison with GRACE-derived gravity field changes, and the variations due to hydrological models a principle good agreement emerges.  相似文献   

2.
Time variable gravity field models derived from the satellite mission GRACE have been demonstrated to be consistent with water mass variations in the global hydrological cycle. Independent observations are provided by terrestrial measurements. In order to achieve a maximum of reliability and information gain, ground-based gravity observations may be deployed for comparison with the gravity field variations derived from the GRACE satellite mission. In this context, the data of the network of superconducting gravimeters (SG) of the ‘Global Geodynamics Project’ (GGP) are of particular interest. This study is focused on the dense SG network in Central Europe with its long-term gravity observations. It is shown that after the separation and reduction of local hydrological effects in the SG observations especially for subsurface stations, the time-variable gravity signals from GRACE agree well with the terrestrial observations from the SG station cluster.Station stability of the SG sites with respect to vertical deformations was checked by GNSS based observations. Most of the variability can be explained by loading effects due to changes in continental water storage, and, in general, the stability of all stations has been confirmed.From comparisons based on correlation and coherence analyses in combination with the root mean square (RMS) variability of the time series emerges, that the maximum correspondence between the SG and GRACE time series is achieved when filtering the GRACE data with Gaussian filters of about 1000 km filter length, which is in accordance with previous publications.Empirical Orthogonal Functions (EOF) analysis was applied to the gravity time series in order to identify common characteristic spatial and temporal patterns. The high correspondence of the first modes for GRACE and SG data implies that the first EOF mode represents a large-scale (Central European) time-variable gravity signal seen by both the GRACE satellites and the SG cluster.  相似文献   

3.
《Journal of Geodynamics》2010,49(3-5):189-194
We investigate the contribution of local and global hydrology to the superconducting gravimeter (SG) installed in the Strasbourg observatory. A deterministic approach is presented to account for the contribution of water storage variations in the soils in the vicinity of the gravimeter: both amount and distribution of water masses are determined before calculating Newtonian attraction. No adjustment is performed on gravity time series.Two multi-depth Frequency Domain Reflectometer (FDR) probes have been installed to monitor the amount of water stored in the soil layer above the gravimeter. Since August 2005, they have been monitoring the variation of the water content of the entire soil thickness. Several investigations have been undertaken in order to estimate the distribution of water masses: a precise local DEM (Digital Elevation Model) has been determined using differential GPS. The geometry and heterogeneity of the soil layer have been evaluated thanks to geophysical and geomechanical prospections. The comparison between observed and modelled gravity variations shows that daily up to seasonal variations are in good agreement. For long-term variations, deep water storage and other processes have to be modelled to explain recorded gravity variations.  相似文献   

4.
We report on a field test of a transportable version of a superconducting gravimeter (SG) intended for groundwater storage monitoring. The test was conducted over a 6-month period at a site adjacent to a well in the recharge zone of the karstic Edwards Aquifer, a major groundwater resource in central Texas. The purpose of the study was to assess requirements for unattended operation of the SG in a field setting and to obtain a gravimetric estimate of aquifer specific yield. The experiment confirmed successful operation of the SG, but water level changes were small (<0.3 m) leading to uncertainty in the estimate of specific yield. Barometric pressure changes were the dominant cause of both water level variations and non-tidal gravity changes. The specific yield estimate (0.26) is larger than most published values and dependent mainly on low frequency variations in residual gravity and water level time series.  相似文献   

5.
《Journal of Geodynamics》2010,49(3-5):310-315
In this paper, we use superconducting gravimeter (SG) data recorded at three stations of the global geodynamics project (GGP) network, with good geographical distribution, to search for possible significant peaks in the gravity spectrum that are in the assumed period range of the Slichter triplet. Seven-year long series from Cantley (Canada), and four-year long series from both Canberra (Australia) and Moxa (Germany) stations are used. First, a solid Earth and ocean tide model is subtracted from the data, followed by a local atmospheric pressure correction based on a frequency-, and location-dependent admittance estimated by the least squares response method. Subsequently, the residual series are filtered with a Parzen-based bandpass filter with a passband (12 h–78 s). A sub-nGal detection level is confirmed by injecting an artificial sine wave of different amplitudes. The Least Squares Self-Coherency spectrum shows the existence of many apparently statistically significant peaks at the 95% confidence level in the band (3–8 h). Although a few peaks are close to the claimed Slichter periods in previous research, the large number of candidate peaks may be related to other mechanisms such as global pressure variations, or hydrology.  相似文献   

6.
The loading effect of the Baltic Sea is immediately recognizable in the gravity record of the superconducting gravimeter T020 in Metsähovi, Finland, by simply inspecting residual gravity together with the tide gauge record at Helsinki 30 km away. The station is 10 km from the nearest bay of the Baltic Sea and 15 km from the open sea. Sea level variations in the Baltic are non-tidal and driven at short periods primarily by wind stress, at longer periods by water exchange through the Danish straits. Locally they can have a range of 2–3 m. Loading calculations show that a uniform layer of water covering the complete Baltic Sea increases the gravity in Metsähovi by 31 nm/s2 per 1 m of water, and the vertical deformation is −11 mm. The observed gravity response to the local sea level is generally less, since the variations at short periods are far from uniform areally, the same water volume just being redistributed to different places. Regression of the whole gravity record (1994-2001) on local sea level gives 50–70% of the uniform layer response, as do loading calculations using actual water distributions derived from 11 tide gauges. However, both fits are dominated by some extreme values of short duration, and parts of the gravity record with long-period variations in sea level are close to the uniform layer response. The gravity observations can be used to test corrections for other co-located geodetic observations (GPS, satellite laser ranging) which are influenced by the load effect but not sensitive enough to discriminate between models.  相似文献   

7.
武汉九峰地震台超导重力仪观测分析研究   总被引:9,自引:1,他引:8       下载免费PDF全文
连续重力观测和GPS的技术结合能够监测到物质迁移和地壳垂直形变之间的量化关系.和相对重力测量以及绝对重力测量技术相比,其避免了时间分辨率和观测精度低,无法精细描述观测周期内的物质迁移过程问题.本文利用武汉九峰地震台超导重力仪SGC053超过13000 h连续重力观测数据;同址观测的绝对重力仪观测结果;气压数据;周边GPS观测结果;GRACE卫星的时变重力场;全球水储量模型等资料,采用同址观测技术、调和分析法、相关分析方法在扣除九峰地震台潮汐、气压、极移和仪器漂移的基础上,利用重力残差时间序列和GPS垂直位移研究物质迁移和地壳垂直形变之间的量化关系.结果表明:在改正连续重力观测数据的潮汐、气压、极移的影响后,不仅准确观测到2009年的夏秋两季由于水负荷引起的约(6~8)×10-8m·s-2短期的重力变化.而且在扣除2.18×10-8(m·s-2)/a仪器漂移和水负荷的影响后,验证了本地区长短趋势垂直形变和重力变化之间具有一致的负相关性规律.同时长趋势表明该地区地壳处于下沉,重力处于增大过程,增加速率约为1.79×10-8(m·s-2)/a.武汉地区重力梯度关系约为-354×10-8(m·s-2)/m.  相似文献   

8.
We first quantify the influence of aquifers on gravity variations by considering local, regional and continental scales. We show that locally only the direct attraction of the underlying aquifer has to be taken into account. At continental (or global scales), the underground water masses act by direct attraction (due to the earth curvature), loading flexure and potential redistribution. We show that at the intermediate regional scale (saying a few kilometres to a few hundreds of kilometres), groundwater contributions can be neglected in practice. Afterwards, we illustrate the difficulties in tackling the local hydrological context by studying comparatively the geological and hydrogeological surroundings of three European Global Geodynamics Project (GGP) superconducting gravimeter stations (Strasbourg, Moxa, and Vienna). Finally, it appears clearly that hydrological variability and cycle characterisations constitute the up-to-date challenge while studying gravity variations in a large spectral range. That is why, gravity is used to quantify hydrological transfers, and overall when seeking for small signals from the Earth's deep interior or other environmental signals (atmosphere, oceans) where groundwater influence can be seen as a disturbance.  相似文献   

9.
《Journal of Geodynamics》2010,49(3-5):348-353
In this study, the loading gravity effect of air mass changes calculated with the three-dimension (3D) meteorological data from the European Centre for Medium-range Weather Forecasts (ECMWF) are removed from superconducting gravimeter (SG) observations. The global hydrological gravity effect is computed and removed with hydrological data from the Global Land Data Assimilation System (GLDAS). Otherwise, the gravity influences induced by a theoretical self-consistent ocean pole tide and variations in length of day (LOD) are considered in the calculation. After removing the influences mentioned previously and also considering the long term trend in the data, a very nice linear relationship between the theoretical gravity pole tide and observed gravity residual (containing the observed gravity pole tide) for each of the selected 9 GGP stations we considered can be obtained. Therefore, the gravimetric factor of the gravity pole tide can be estimated with a simple linear regression. The results show that no clear phase lag is found between the theoretical gravity pole tide and observed gravity residuals from the nine SG stations.  相似文献   

10.
《Journal of Geodynamics》2010,49(3-5):354-359
In order to achieve a consistent combination of terrestrial and satellite-derived (GRACE) gravity field variations reductions of systematic perturbations must be applied to both data sets. At the same time evidence needs to be provided that these reductions are both necessary and sufficient. Based on the OMCT and the ECCO model the gravity effect of non-tidal oceanic mass shifts is computed for various sites equipped with a superconducting gravimeter (SG) and esp. the long-periodic contributions are studied. With these oceanic models the dynamic ocean response to atmospheric pressure loading is automatically computed, and thus goes beyond the more simplistic concepts of an inverted barometer, or alternately a rigid ocean, which is a clear advantage.The findings so far are ambiguous: for instance the systematic seasonal change of about 10 nm/s2 in gravity for mid-European stations is presently not found in the observed gravity variations. Generally, the order of magnitude of the total effect of 22–27 nm/s2 is surprisingly large for inland stations. In some data sections the reduction leads to the removal of some of the larger residuals. The results obtained for the South-African station Sutherland differ. Here the modelled seasonal variation caused by the non-tidal oceanic mass redistribution and gravity residuals generally correlate, and thus by the reduction an improvement of the signal-to-noise ratio in the gravity observations is achieved.An explanation for the different results might be found in the global hydrological models. Such a model is needed in order to remove the effect of large-scale variations in continental water storage in the gravity observations. This reduction plays a greater role for European stations than for the South African site. A critical impact of the land-sea-mask used in the oceanic models and the subsequent insufficient resolution of the North and Baltic Sea on the computations at the mid-European sites could not be confirmed.From a comparison between the OMCT and the ECCO model substantial discrepancies in some regions of the earth emerge, while both predict variations at inland stations in Europe, South Africa, and Asia of similar magnitude. We currently hesitate to recommend including this reduction in the routine processing of SG data because the seasonal order of magnitude for inland stations is unexpectedly large and partly significant deviations between the modelled oceanic effects exist. If the order of magnitude proves to be correct universally, this reduction has to be applied.  相似文献   

11.
Regional gravity variations in Europe from superconducting gravimeters   总被引:1,自引:0,他引:1  
Recent satellite missions (CHAMP, GRACE) are now returning data on the time variation of the gravity field with harmonic coefficients computed every 4 weeks. The promise is to achieve a sub-microgal accuracy that will define continental mass variations involving large-scale hydrology. With this in mind, we examine the time varying gravity field over central Europe using a limited number of high quality ground-based superconducting gravimeter stations within the Global Geodynamics Project (GGP). Our purpose is to see whether there are coherent signals between the individual stations and to compare the regional component with that predicted from models of continental hydrology. The results are encouraging. We have found, using empirical orthogonal eigenfunctions of the gravity data that a clear annual signal is present that is consistent in phase (low amplitudes in summer) and amplitude (1–3 microgal) with that determined from a large-scale model of land water in connection with global climate modeling. More work is required to define how the gravity field is related to large-scale soil moisture and other mass variations, and we have yet to compare our results to the latest satellite-derived data.  相似文献   

12.
Recordings of micro- and moderate-size local earthquakes have been used to quantify site effects in the central-west Turkey which contains one of the world’s best examples of a rapid intra-continental extension with its high population and industrial potential. We analyzed 436 earthquakes with local magnitudes ranging between 2.0 and 5.6 using three component digital recordings from 32 stations. Site functions were obtained using two different spectral ratio approaches (horizontal to vertical spectral ratio, HVSR, and standard spectral ratio, SSR). HVSR estimates of transverse and radial S-waves were compared with one another. Epicentral distance, magnitude and back-azimuth dependencies of site functions were also evaluated. In general, HVSR values from transverse and radial S-waves are similar within a factor of 2. The back-azimuth dependencies of transverse S-wave HVSR results are more significant than distance and magnitude dependencies. On the other hand, averaging of transverse and radial S-wave HVSR results eliminates systematic back-azimuth dependencies caused by source radiation effects. Distributions of HVSR estimates along ~N–S linear array, which traversed main grabens in the region with a station spacing of 3–4 km, reflect subsurface geological complexities in the region. The sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment–bedrock interface near the basin edges. The results also show that, even if the site is located on a horst, the presence of weathered zones along the surface could cause moderate frequency dependent site effects. Comparison of HVSR and SSR estimates for the stations on the graben sites showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects.  相似文献   

13.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
近年来,背景噪声成像方法在恢复高频面波信号及获取近地表速度结构方面得到了广泛的应用,本文将该方法应用于准噶尔盆地南缘的呼图壁背斜地区的呼图壁储气库.采用储气库及其周边区域22个台站记录的连续背景噪声数据的垂直分量,通过噪声互相关方法获得了台站对之间的瑞利面波经验格林函数,并进一步提取了0.5~1.5 s的基阶瑞利面波群速度频散曲线.首先根据区域平均频散曲线得到了该地区地下数百米的平均一维横波速度结构,然后利用基于面波射线路径追踪的面波频散直接成像方法得到该地区深度为500 m以上的三维横波速度结构.反演结果显示该地区沉积层较厚,整体横波速度值较小(0.4~0.9 km·s-1).储气库在地表投影区域的横波速度值较小,这可能是由于抽注水、气引起的沉积岩石裂隙所导致.储气库东北和东南方向均有明显的相对高速区,推测是区域地下水位和地形起伏综合作用的结果.本研究获得的近地表三维速度结构为呼图壁储气库地区的上覆地层物性研究、区域微震精定位、场地效应的评估和去除浅层影响的深部介质成像等研究提供了重要基础.  相似文献   

16.
Gyula Mentes   《Journal of Geodynamics》2008,45(4-5):169-177
In Hungary four extensometric observatories were established in the last two decades. The extensometers were installed primarily for observations of Earth tides. A 15-year continuous data series (1991–2005) was recorded at the Sopronbánfalva station and a 7-year record (1993–1999) was obtained at the Pécs station. The length of the measured continuous data series at the two other stations (Bakonya and Budapest) is only a few years. The long-term data records were also applied to the investigation of long-periodic deformations caused by recent tectonic movements. To get an insight into the present day tectonic processes on the margin of the Pannonian Basin, the measurement results of two additional stations (Vyhne in Slovakia and Beregovo in Ukraine) were also included into the investigations. The seasonal variations in the long data series due to temperature and air pressure effects were eliminated. The residual curve – after the correction of the seasonal effects and filtering the “high frequency” components (e.g. earthquakes, Earth tides, etc.) – contains the instrumental drift. It is impossible to determine this curve mathematically. It can be diminished by special instrumental solutions and by regular calibration of the instruments. This paper shows methods and possible solutions how the instrumental drift was investigated and eliminated in order to get the most reliable data for studying recent tectonic movements. The reliability of the extensometric measurements was tested by the tidal evaluation of the data series. The results of the observations show that the Pannonian Basin is under compressive stress. The strain rates measured by extensometers on the margin of the basin are about three orders of magnitude higher than the intra-plate strains obtained by GPS measurements. The reason for this large difference arises from the interaction between the plate boundary and intra-plate forces and from the different measurement techniques. Investigations showed that the rate of the tectonic movements varies, and depends on the local geographical and topographical conditions.  相似文献   

17.
《Journal of Geodynamics》2010,49(3-5):115-119
Tides and barometric pressure variations cause pore pressure changes in the solid earth. In boreholes which are hydraulically connected to confined aquifers these pore pressure changes can be observed as water level variations. In case of confined aquifers boreholes can be regarded as volumetric strainmeters. From June 2004 until May 2005 a large scale injection experiment was realised in the pilot borehole (4000 m) at the German Continental Deep Drilling (KTB) site in Bavaria. During this test the injection induced deformation was observed by a tiltmeter array around KTB consisting of five tiltmeter stations at horizontal distances from 1.6 to 3 km from the injection borehole. At each station the local groundwater level was observed in depths between 30 and 50 m. The pore pressure was recorded in the boreholes. The time series were checked for tidal signals and injection influence. The injection was not verified presumably due to the fact that the penetration of the injected water was controlled by local geology and tectonic faults zones. Although the boreholes extending only to shallow depth tidal signals are clearly observable in at least two of five stations. On December the 26th 2004 the Sumatra–Andaman earthquake occurred which is clearly detectable in the pore pressure variations at all five stations.  相似文献   

18.
19.
Results for more than 42 months of observations with the superconducting gravimeter CD-034 at the Geodynamic Observatory Moxa are discussed. Moxa observatory is one of the newer stations within the ‘Global Geodynamics Project’ (GGP). A special feature of the gravimeter at Moxa is its dual sensor system; differences in the results obtained from the two sensor recordings are generally well within the standard deviations of the tidal analysis. One significant difference concerns the slightly different drift rates of 31 and 49.5 nm/s2 per year for upper and lower sensor; both sensor drifts can be fitted by a linear function. We find that the noise levels are close to the ‘New Low Noise Model’ for the seismic-modes and are also low in the tidal bands. Due to this low noise, Moxa is a station well suited to search for small geodynamic signals. The long-period variation in the gravity residuals correlates well with the polar motion.The difference signal between the two sensor recordings has a peak-to-peak amplitude of about 6 nm/s2 and shows systematic variations. Its spectrum is characterised by instrumental noise between 0.2 and 0.4 cph. The noise level of the difference and of the sum of the two residual datasets are clearly lower, respectively, higher than the noise contents of the gravity residuals themselves. This is a strong indication for the existence of broadband signals common to the two residual datasets, leading to the conjecture that the reduction of environmental effects is still not sufficient.Our results once more emphasize the necessity to correct the data for barometric pressure effects when analyzing the data for seismic modes. The reduction visibly increases the signal-to-noise ratio in the low frequencies of the mode band and helps to avoid misinterpreations of peaks. Besides the well known barometric pressure influence we can establish hydrological effects in the data which are probably caused by soil moisture and groundwater table variations as well as by batch-wise water movement within the weathering layer. As the major part of the observatory surroundings is above gravimeter level, an anticorrelation between hydrological and gravity changes is observed. In addition, it can be shown that global hydrological effects reach an order of magnitude that makes it necessary to consider these effects when analyzing long-period signals like polar motion. Vice versa these effects are large enough to be detectable in the gravity data. A first joint analysis of five datasets from the GGP network shows no indications for signals related to the Slichter triplet or core modes.  相似文献   

20.
A single recovery type curve from Theis'' exact solution   总被引:2,自引:0,他引:2  
Samani N  Pasandi M 《Ground water》2003,41(5):602-607
The Theis type curve matching method and the Cooper-Jacob semilog method are commonly used for estimation of transmissivity and storage coefficient of infinite, homogeneous, isotropic, confined aquifers from drawdown data of a constant rate pumping test. Although these methods are based on drawdown data, they are often applied indiscriminately to analyze both drawdown and recovery data. Moreover, the limitations of drawdown type curve to analyze recovery data collected after short pumping times are not well understood by the practicing engineers. This often may result in an erroneous interpretation of such recovery data. In this paper, a novel but simple method is proposed to determine the storage coefficient as well as transmissivity from recovery data measured after the pumping period of an aquifer test. The method eliminates the dependence on pumping time effects and has the advantage of employing only one single recovery type curve. The method based on the conversion of residual drawdown to recovered drawdown (buildup) data plotted versus a new equivalent time (delta(t) x t(p)/t(p) + delta(t)). The method uses the recovery data in one observation point only, and does not need the initial water level h0, which may be unknown. The accuracy of the method is checked with three sets of field data. This method appears to be complementary to the Cooper-Jacob and Theis methods, as it provides values of both storage coefficient and transmissivity from recovery data, regardless of pumping duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号