首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We simulated the process of magma–carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt–carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt–carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma–carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.  相似文献   

2.
3.
A review of 174 Soviet publications on physicochemical studies in magmatism, post-magmatic phenomena, origins of rocks, minerals ores, and related subjects, with particular attention to the impact of the derivations of Korzhinskiy of the Phase Rule upon modern physical chemistry in petrology. — V.P. Sokoloff  相似文献   

4.
Volcán Tequila is an extinct stratovolcano in the western Mexican Volcanic Belt that has erupted lavas ranging from andesite to rhyolite during the last 0.9 Ma. Following an early period of rhyolitic volcanism, the main edifice of the volcano was constructed by central vent eruptions that produced 25 km3 of pyroxene-andesite. At about 0.2 Ma central activity ceased and numerous flows of hornblende-bearing andesite, dacite, and rhyodacite erupted from vents located around the flanks of the volcano. Bimodal plagioclase phenocryst rim compositions in lavas from both the main edifice and the flanks indicate that magma mixing commonly occurred shortly prior to or during eruption. Compositions of endmember magmas involved in mixing, as constrained by whole-rock major and trace element abundances, phenocryst compositions, and mineral-melt exchange equilibria, are similar to those of some lavas erupted from the central vent and on the flanks of the volcano. Estimated pre-eruptive temperatures for hornblende-bearing lavas (970°–830°C) are systematically lower than for lavas that lack hornblende (1045°–970°C), whereas magmatic H2O contents are systematically higher for hornblende-bearing lavas. In addition to stabilizing hornblende, high magmatic water contents promoted crystallization of calcic plagioclase (An70–82). Frequent injections of magma into the base of the subvolcanic plumbing system followed by eruption of mixed magma probably prevented formation of large volumes of silicic magma, which have caused paroxysmal, caldera-forming eruptions at other stratovolcanoes in western Mexico. The later stages of volcanic activity, represented by the flank lavas, indicate a change from a large magma storage reservoir to numerous small ones that developed along a NW-trending zone parallel to regional fault trends. Sr and Nd isotopic data for lavas from the Tequila region and other volcanoes in western Mexico demonstrate that differentiated calc-alkaline magmas are formed primarily through crystal fractionation of mantle-derived calc-alkaline basalt coupled with assimilation of crustal material. Present Address:Department of the Geophysical Sciences The University of Chicago, Chicago IL, 60637, USA  相似文献   

5.
The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for >80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI > 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.  相似文献   

6.
The book follows the historical course of the development of geological science, from the time of ancient civilisations in the Mediterranean region, up to the present day. However, the beginning of geology as a modern science is generally considered to date from the observation of the Devonian unconformity at Siccar Point near Edinburgh by Hutton around 1788. This followed observations he made at Glentilt of granite cutting the schistositv planes of the schists,  相似文献   

7.
8.
Volcán Ceboruco, Mexico, erupted ~1,000 years ago, producing the Jala pumice and forming a ~4-km-wide caldera. During that eruption, 2.8 to 3.5 km3 of rhyodacite (~70 wt% SiO2) magma and 0.2 to 0.5 km3 of mixed dacite (~67 wt% SiO2) magma were tapped and deposited as the Jala pumice. Subsequently, the caldera was partially filled by extrusion of the Dos Equis dome, a low-silica (~64 wt% SiO2) dacite dome with a volume of ~1.3 km3. Petrographic evidence indicates that the Jala dacite and Dos Equis dacite originated largely through the mixing of three end-member magmas: (1) rhyodacite magma, (2) dacite magma, and (3) mafic magma. Linear least-squares modeling and detailed modal analysis indicate that the Jala dacite is predominantly a bimodal mixture of rhyodacite and dacite with a small additional mafic component, whereas the Dos Equis dacite is composed of mostly dacite mixed with subordinate amounts of rhyodacite and mafic magma. According to Fe–Ti oxide geothermometry, before the caldera-forming eruption the rhyodacite last equilibrated at ~865 °C, whereas the dacite was originally at ~890 °C but was heated to ~960 °C by intrusion of mafic magma as hot as ~1,030 °C. Zoning profiles in plagioclase and/or magnetite phenocrysts indicate that mixing between mafic and dacite magma occurred ~34–47 days prior to eruption, whereas subsequent mixing between rhyodacite and dacite magmas occurred only 1–4 days prior to eruption. Following the caldera-forming eruption, continued inputs of mafic magma led to effusion of the Dos Equis dome dacite. In this case, timing between mixing and eruption is estimated at ~93–185 days based on the thickness of plagioclase overgrowth rims.Editorial responsibility: T.L. Grove  相似文献   

9.
Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia’s most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007–2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47–94), orthopyroxene (En64–72, Fs24–32, Wo2–4), clinopyroxene (En40–48, Fs14–19, Wo34–46), Ti-magnetite (Usp16–34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6.5 to 7.6 ‰, respectively. A single whole rock analysis of the 2007–2008 dome lava gave a δ18O value of 7.6 ‰, whereas meta-basaltic and calc-silicate xenoliths are characterised by δ18O values of 6.2 and 10.3 ‰, respectively. Magmatic δ18O values calculated from individual pyroxene and plagioclase analyses range from 5.7 to 7.0 ‰, and 6.2 to 7.4 ‰, respectively. This range in O-isotopic compositions is explained by crystallisation of pyroxenes in the lower to mid-crust, where crustal contamination is either absent or masked by assimilation of material having similar δ18O values to the ascending melts. This population is mixed with isotopically distinct plagioclase and pyroxenes that crystallised from a more contaminated magma in the upper crustal system. Binary bulk mixing models suggest that shallow-level, recycled volcaniclastic sedimentary rocks together with calc-silicates and/or limestones are the most likely contaminants of the 2007–2008 Kelut magma, with the volcaniclastic sediments being dominant.  相似文献   

10.
Summary Kahoolawe Island is a 1.4 to 1 Ma shield volcano composed of shield, caldera-fill, and postshield tholeiitic lavas, and postshield alkalic basalt and hawaiite lavas. One postshield vent erupted alkalic lavas (K2O 1.1–1.6 wt.%) with resorbed olivines of wide compositional range (cores, Fo86–71), resorbed Na-plagioclase (An57–30; largely andesine) and clinopyroxene (evolved; Mg#s 76–71), and groundmass orthopyroxene (Mg# 62). They also contain tholeiitic gabbro xenoliths, which, as a suite, have a continuum of mineral compositions — clinopyroxene Mg#s 83–74, orthopyroxene Mg#s 83–76, and plagioclase An69–35 (e.g., includes andesine gabbro). Lava compositions do not fall on expected Hawaiian fractionation trends due to MgO enrichment (e.g., CaO 7 wt.% @ MgO 6 wt.%). This assortment of mineral and rock components within alkalic lavas with apparent Mg enrichment is owed to a complex history that began with protracted mixing among primitive and differentiated tholeiitic magmas, probably near the end of shield building. These hybrid magmas crystallized a compositional variety of olivines that were resorbed during reservoir replenishments, and also crystallizedin situ to form orthopyroxene-bearing gabbro on reservoir walls. When magma production rates declined during the shield to postshield transition of tholeiitic to alkalic magmatism, the tholeiitic hybrids in reservoirs fractionated to yield highly evolved phases such as andesine and clinopyroxene with Mg# < 75. When postshield hawaiite magmas subsequently entered reservoirs, alkalic-tholeiitic hybridization occurred; the resulting `complex' mixture of hawaiite+tholeiitic hybrids resorbed andesine and clinopyroxene crystals and, upon eruption, entrained xenoliths of gabbro. Mass balancing suggests that the alkalic-tholeiitic hybridization involved 44% hawaiite mixed with a nearly equal amount of tholeiitic hybrid (MgO 9.5 wt.%) plus olivine and andesine. This type of complex hybridization is a logical process for magmatism associated with tholeiitic to alkalic transitions and waning magma production, and this Kahoolawe example is the first to document such mixing in Hawaiian reservoirs.
Die Modifikation alkalischer Magmen durch die Inkorporation tholeiitischer Komponenten: Komplexe Hybridisierung auf der Insel Kahoolawe, Hawaii
Zusammenfassung Die Insel Kahoolawe ist ein 1.4 bis 1 Ma alter Schildvulkan, der sich aus tholeiitischen Schild-, Kaldera- und Post-Schildlaven, sowie aus alkalibasaltischen und hawaiitischen Post-Schildlaven zusammensetzt. Ein Post-Schildschlot förderte alkalische Laven (K2O 1.1–1.6 Gew.%) mit resorbierten Olivinen, die eine breit gestreute Zusammensetzung zeigen (Kerne, Fo86–71), resorbiertem Na-Plagioklas (An57–30; großteils Andesin) und entwickeltem Klinopyroxen (Mg# 76–71), sowie Orthopyroxen in der Grundmasse (Mg# 62). Sie führen auch tholeiitische Gabbro-Xenolithe, die als Suite kontinuierliche Mineralzusammensetzungen zeigen — Klinopyroxen Mg# 83–74, Orthopyroxen Mg# 83–76 und Plagioklas An69–35 (z.B. inklusive Andesin-Gabbro). Die Lavenzusammensetzungen folgen wegen einer Mg-Anreicherung (z.B. CaO7 Gew.% @ MgO6 Gew.%) nicht dem für Hawaii erwarteten Fraktionierungstrend. Diese Ansammlung von Mineral- und Gesteinskomponenten in alkalischen Laven mit scheinbarer Mg-Anreicherung geht auf eine komplexe Entwicklungsgeschichte zurück, die mit einer länger andauern Mischung von primitiven und differentierten tholeiitischen Magmen, wahrscheinlich im Endstadium der Schildbildung, begann. Diese hybriden Magmen kristallisierten Olivin variabler Zusammensetzung, der im Zuge der Reservoir-Auffüllung resorbiert wurde und kristallisierte an den Reservoir-Wändenin situ als Orthopyroxen-führende Gabbros. Als die Magmenproduktionsraten im Übergang vom tholeiitischen Schild- zum alkalischen Post-Schild-Magmatismus geringer wurden, fraktionierten die tholeiitischen Hybride in den Reservoiren und führten zur Bildung von kochentwickelten Phasen, wie Andesin und Klinopyroxen mit Mg# < 75. Die Zufuhr von Post-Schildmagmen in die Reservoire verursachte eine alkalisch-tholeiitische Hybridisierung. Die resultierende Mischung von Hawaiit-Tholeiit-Hybriden resorbierte Andesin- und Klinopyroxen-Kristalle und verfrachtete die Gabbro-Xenolithe bei der Eruption. Massenbilanzen weisen darauf hin, daß die alkalisch-tholeiitische Hybridisierung 44% Hawait, gemischt mit etwa dem gleichen Anteil an tholeiitischem Hybrid (MgO29.5 Gew.%) plus Olivin und Andesin, beinhaltete. Diese Art komplexer Hybridisierung ist ein logischer Prozeß von Magmatismus mit tholeiitisch-alkalischem Übergangschemismus und ausklingender Magmenproduktion und dieses Beispiel von Kahoolawe ist das erste, das derartige Mischungsprozesse für Reservoire auf Hawaii dokumentiert.


With 8 Figures  相似文献   

11.
12.
13.
14.
15.
16.
《Gondwana Research》2010,17(3-4):414-430
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

17.
Deng  Changzhou  Sun  Guangyi  Sun  Deyou  Han  Jinsheng  Yang  Dongguang  Tang  Zongyuan 《Mineralogy and Petrology》2019,113(5):651-666
Mineralogy and Petrology - The morphology, trace-element composition and geochronology of 43 zircon grains from two monzogranite samples from the Northeast Xing’an Block, northeastern China,...  相似文献   

18.
19.
20.
The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n?=?62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8?±?5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号