首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chert distribution in the Lake Valley rocks is selective to mud-supported facies; it is not related to proximity to unconformities. The facies selectivity of the chertification is believed to be a function of the depositional distribution of indigenous silica as sponge spicules, an interpretation that is supported by high positive qualitative correlation of chert with spiculitic rocks. Petrography indicates that the spicules were all originally siliceous, and that they all went through a moldic stage during which many molds were compactively destroyed and distorted. Remaining molds were subsequently cemented by calcite or chalcedony. Chert distribution and spicule petrography argue for an intraformational source for much of the silica. Chert micro-fabrics are dominated by microquartz, a replacement of grains and lime mud; length-fast chalcedony, a pore-filling cement; and megaquartz, a post-chalcedony pore-filling cement. Petrography of compaction features within chert masses indicates that chertification occurred after some burial. Based on stratigraphic reconstruction this burial depth was a maximum of about 215 m. and was most likely a few metres to a few tens of metres. Petrography of chert-calcite cement relationships indicates that chertification occurred before and during first generation, pre-Pennsylvanian non-ferroan calcite cementation, and was completed before late-stage, post-Mississippian ferroan calcite precipitation. Petrography of chert clasts in basal Rancheria (Meramecian) and basal Pennsylvanian conglomerates proves these clasts derived from the Lake Valley Formation and were chertified before redeposition. Thus, some cherts in the Lake Valley are pre-Meramecian in age, but all are pre-Pennsylvanian in age. Furthermore, association of the cherts with the non-ferroan cements indicates the cherts were probably precipitated in meteoric phreatic lens established beneath the pre-Meramecian and pre-Pennsylvanian subaerial unconformities.  相似文献   

2.
The Late Cretaceous to Early Eocene, dominantly micritic, Amuri Limestone Group (ALG) was deposited in an approximately NW trending trough, in eastern Marlborough, New Zealand. The ALG comprises: the Mead Hill Formation; the Teredo, Lower and Middle Limestone formations; and the Upper and Lower Marl formations. Chert and dolomite are concentrated in the Mead Hill Formation, which contains five of six recognized diagenetic zones: Zone I at the base of the ALG consists almost entirely of chert; Zone II consists solely of chert and dolomite; Zone III comprises chert and limestone; Zone IV is composed of chert plus dolomite; Zone V is a chertified mudstone; and the minor amounts of chert found in the Middle Limestone Formation comprise Zone VI. With the exception of Zones IV and V, chert decreases stratigraphically upwards and away from the basin centre. All the dolomites are composed of <1 mm diameter rhombohedra in discontinuous beds and lenses. Generally Ca-rich, and non- to slightly ferroan, the dolomite contains approximately 500–900 ppm Mn and 200–400 ppm Sr. δ13C values average 1–2%PDB with δ18O ratios of about -4%PDB. Mass balance calculations indicate that the Mg2+ for dolomitization was derived from sea water. Sr, Fe and Mn concentrations are interpreted as indicating dolomite formation in the marine environment, with no influence from meteoric waters. The intimate association with pyrite implies dolomite formation in association with sulphate reduction, in the upper sediment column. δ18O data show that the bulk of the dolomite formed at temperatures below 50°C. All chert samples contain in excess of 90 wt% SiO2, about 1 wt% Al2O3 and 1 wt% from losses on ignition. Generally all other major elements total less than 2 wt% oxide. δ18O values range from 26·8 to 29·0%SMOW. Chert chemistry is consistent with the replacement of host carbonate and expulsion of carbonate-bound components from the site of chertification, and the effective dilution by SiO2 of non-carbonate-bound insoluble residues. δ18O data indicate that chert formed in fluids of similar composition and temperature as the dolomite. The abundance of disseminated pyrite in cherts implies an association with sulphate reduction. Silica for chertification is thought to have initially come from dissolution of siliceous organisms. However, there is insufficient biogenic silica available to form the volumes of chert observed. It is suggested that the bulk of the silica came from SiO2-rich pore waters generated by clay mineral reactions in the thick underlying mudstones. The ALG compacted down through these pore waters. Chert and dolomite nucleation are considered to have been penecontemporaneous. Dolomitization was initially probably the faster process, continuing as long as sulphate reduction prevailed and there was an adequate supply of Mg2+. The nucleation of chert, although initially slower (probably due to a relatively lower initial SiO2 supply), continued after cessation of dolomitization to the extent of completely chertifying the dolomite intercrystalline matrix. The amount of chertification decreased progressively as SiO2 supplies diminished, both stratigraphically upwards and away from the basin centre.  相似文献   

3.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian-Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian-Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

4.
Antiquated stratigraphic and tectonic concepts on non‐metamorphic upper Palaeozoic and Mesozoic sequences in eastern Burma are revised.

Post‐Silurian of Northern Shan States: The misleading traditional term Plateau Limestone ('Devonian‐Permian') is abandoned. The Devonian part is to be known as Shan Dolomite—with the Eifelian Padaukpin Limestone and the Givetian Wetwin Shale as subordinate member formations—and the disconformable Permian as Tonbo Limestone. Carboniferous formations are absent.

Upper Palaeozoic of Karen State: The sequence begins with the fossiliferous Middle to Upper Carboniferous Taungnyo Group resting unconformably on the epimetamorphic Mergui ‘Series’ (probably Silurian) and on older metamorphics. There is no evidence of Devonian rocks. The Permian is represented by widespread, but discontinuous, reef complexes, known as Moulmein Limestone, which rest unconformably on the moderately folded Carboniferous. The earliest beds of the Permian are of the Artinskian Epoch. No Mesozoic sequence is known west of the Dawna Range.

Mesozoic of Northern Shan States: Triassic and Jurassic are present, but the Cretaceous is absent. The Bawgyo Group (Upper Triassic and Rhaetic) rests unconformably on the Palaeozoic and consists of the Pangno Evaporites (below) and the Napeng Formation. The Jurassic Namyau Group, consisting of the Tati Limestone (Bathonian‐Callovian) and the Hsipaw Redbeds (Middle to Upper Jurassic) follows unconformably.

Origin of folding of Mesozoic: The intense primary folding of the Triassic and Jurassic sequences in the Hsipaw region is due to gravity‐sliding (Gleittektonik) on the Upper Triassic evaporites. Secondary complications were introduced by diapiric displacements which are probably continuing. Neither of these tectonic phases shows a significant causal relationship with the Alpine Orogeny sensu stricto. The latter is at best responsible for minor overprinting, chiefly through broad warping and horst‐and‐graben fracturing of the Shan Dolomite with locally considerable vertical displacements. There are no Alpine fold structures in the region. Geotectonically, it was a well‐consolidated frontal block of the Alpidic hinterland.  相似文献   

5.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian–Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian–Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

6.
A new stratigraphic nomenclature is proposed for the approximately 600 m thick, mainly clastic transitional sequence between the underlying Mempelam Limestone and overlying Kubang Pasu/Singa Formation in northwest Peninsular Malaysia. This sequence represents shallow marine deposits of the continental margin of the Sibumasu Terrane during the Middle Palaeozoic (Devonian–Carboniferous). It is separated into several formations. The Timah Tasoh Formation is an approximately 76 m sequence consisting of 40 m of laminated tentaculitid shales at the base, containing Monograptus yukonensis Jackson and Lenz and Nowakia (Turkestanella) acuaria Alberti, giving an Early Devonian (Pragian–Emsian) age, and about 36 m of rhythmically interbedded, light coloured argillo-arenites. The Chepor Formation is about 90 m thick and consists mainly of thick red mudstone interbedded with sandstone beds, of Middle to Late Devonian age. A new limestone unit is recognized and named the Sanai Limestone, which contains conodonts of Famennian age. The Binjal Formation consists of red and white mudstone interbedded with sandstone beds showing Bouma sequences. The Telaga Jatoh Formation is 9 m thick and consists mainly of radiolarian chert. The Wang Kelian Formation is composed of thick red mudstone beds interbedded with silty sandstone, and contain fossils indicative of an Early Carboniferous (Visean) age. The succession was deposited on the outer shelf, with depositional environments vertically fluctuating from prodelta to basinal marine. The Devonian–Carboniferous boundary is exposed at Hutan Aji and Kampung Guar Jentik, and indicates a major regressive event during the latest Devonian.  相似文献   

7.
The Carboniferous Bear Gulch Limestone of the central Montana Big Snowy Trough is a lithographic limestone analogous to the plattenkalk carbonates of the Mesozoic European/Middle Eastern Tethyan belt. It contains an excellently preserved chitinous and phosphatic marine fauna. Petrographic and field studies synthesized with palaeontological data provide insights into depositional history. Tectonic activity initiated development of small en echelon basins. Rims of these basins were sites of high primary productivity. Photosynthesis by subtidal cyanobacterial mats and algae caused in situ precipitation of micrite. Cyanobacteria and algae also provided a food source for benthic and nektonic organisms, which provided food for predators. Respiration in turn provided carbon dioxide for continued photosynthesis. Thus a balanced ecosystem evolved. Productivity in the water column used up available oxygen, resulting in dysaerobic to anaerobic conditions in the bottom waters and sediments. This plus high sedimentation rates of carbonate ooze transported downslope, aided in preservation of whole-body fossils. There are no likely modern analogues known for the Bear Gulch Limestone. However, comparisons with Mesozoic plattenkalke demonstrate that it is most closely analogous to those deposited in shallow water back-reef areas of the Tethyan carbonate platform, rather than to those deposited in the deeper water shelf-edge environment. This is in agreement with the water depth of roughly 40 m estimated for the Bear Gulch Limestone.  相似文献   

8.
在黔南望谟县桑朗区(图1)马岭岗上二叠统剖面和水电站中上泥盆统剖面中有比较丰富的遗迹化石。根据采得的材料统计,共有7个属10个种(包括未定种),其中有两个新属和四个新种。在描述这些遗迹化石的同时,笔者还根据岩石学特征及遗迹化石的组合特征来对当时的沉积环境作一初步探讨。  相似文献   

9.
彭阳  李岩  胡贵昂  陆刚  乔秀夫 《地质论评》2007,53(6):736-742
广西桂林庙头上泥盆统融县组台地边缘相具鸟眼或溶孔砂屑生屑藻粘结灰岩中发育了大量灰岩脉,灰岩脉呈岩墙状近直立地切过围岩,露头上可见连续垂直延伸长度达十余米,脉内仍是上泥盆统融县组灰岩组分,仅比围岩稍晚或同时代的:角砾状退白云石化藻粘结灰岩、角砾状藻粘结灰岩(快速堆积,角砾多数来自围岩)、细鲕粒颗粒灰岩、含钙球砂屑粒泥灰岩、藻砂屑腹足泥粒灰岩(正常沉积或液化变形软沉积流,均高于围岩层位)及大量栉壳状方解石脉(张性环境)等,灰岩脉内可见软沉积物变形痕迹及液化脉(地震液化),晚期灰岩脉可穿插早期灰岩脉;在其西侧同层位共生有一套楔状(地裂缝)、不规则状角砾灰岩体,角砾棱角状,大小不等,成分是灰色中厚层角砾状藻粘结灰岩、含钙球砂屑粒泥灰岩等。笔者等注意到灰岩脉均出露在北东向正断层的下盘(东侧),而角砾灰岩体则均出露在该断层的上盘(西侧),事实上,灰岩脉及角砾灰岩体分布走向与北东向断层走向一致,角砾灰岩体中的角砾成分显示其来自较灰岩脉围岩稍高层位,与灰岩脉内充填岩性相近,因此,是该断层控制了当时的沉积,此断层是晚泥盆世台地边缘同沉积正断层;灰岩脉是与断层伴生的张性裂隙被围岩角砾或稍晚时段的沉积物充填;角砾灰岩体是同沉积正断层形成的断层崖崩落角砾岩,指示一个消失殆尽的晚泥盆世碳酸盐岩同沉积正断层陡崖,因而,桂林台地,至少西段台地边缘,是与右江各孤立台地边缘一样——在地质图上应标示为同沉积正断层边界。其构造意义是:庙头地区的灰岩脉、角砾灰岩体及同沉积断层是桂林台地对晚泥盆世构造伸展作用的响应,从而说明广西晚古生代的板块拉张,不是从二叠纪才开始的,而是至少从晚泥盆世就开始了;晚古生代至早三叠世持续的孤立台地与深水盆地相间的古地理格局,是在晚泥盆世就奠定了基础。  相似文献   

10.
Chert nodules of the Drunka Formation (Lower Eocene) are mostly spherical, have diameters from 40 to 120 cm, are quasi-uniformly spaced 2–3 m apart in the plane of bedding, have concentric internal structure and, except for rare small (<6 cm) solid chert nodules, are less than 85% chertified. Nodules formed after moderate alteration of limestone by meteoric water (δ18Ocalcite = –4 to –8‰) at shallow (<100 m) burial depths; more extensive alteration of limestone (δ18O = –10 to –16‰) by meteoric water followed nodule growth. Chertification was by low-temperature meteoric water (δ18Oquartz = +18‰ in margins to +22‰ in nuclei) at shallow burial depths. Meteoric water may have invaded the Drunka Formation in association with shelf progradation during the Early Eocene, or during the development of a Middle Eocene unconformity. Replacement of carbonate mud by microcrystalline quartz was the dominant chertification process, but fossils were replaced in part by fine-grained equant megaquartz, quartzine and chalcedony; the last of these occurs in places as beekite. Opal A-secreting marine organisms are the inferred source of silica, but none are preserved. There is no compelling evidence of an opal-CT precursor, so quartz may have formed by direct precipitation. Self-organization processes of enigmatic character established the spacing pattern of the nodules and also the Liesegang-banded internal structure of the chert nodules. Nodules grew chiefly by diffusive supply of silica, although one locality has elongate nodules that grew when there was some porewater advection. Chertification patterns and δ18O values of both calcite and quartz indicate that nodule growth was complex and variable. Some nodules probably grew from the centre outwards. Many nodules, however, initially grew simultaneously across the entire nodule, but late-stage growth was predominantly at the outer margins or at selective internal sites.  相似文献   

11.
Nodular chert from the middle and upper Arbuckle Group (Early Ordovician) in the Slick Hills, SW Oklahoma, was formed by selective replacement of grainstones, burrow fillings, algal structures, and evaporite nodules. Chert nodules are dominantly microquartz with minor fibrous quartz (both quartzine and chalcedony), megaquartz, and microflamboyant quartz. Lepisphere textures of an opal-CT precursor are preserved in many (especially in finely-crystalline) chert nodules. The δ18O values of microquartz chert range from +23.4 to + 28.80/00 (SMOW), significantly lower than those of Cenozoic and Mesozoic microquartz chert formed both in the deep sea and from near-surface sea water. The δ18O values of chert decrease with increasing quartz crystal size. Silicification in the Arbuckle Group occurred during early diagenesis, with the timing constrained by the relative temporal relationships among silicification, burial compaction, and early dolomite stabilization. Silica for initial chert nucleation may have been derived from both dissolution of sponge spicules and silica-enriched sea water. Chert nucleation appears to have been controlled by the porosity, permeability, and organic matter content of precursor sediments. This conclusion is based on the fact that chert selectively replaced both porous grainstones and burrows and algal structures enriched in organic matter. Growth of chert probably occurred by a maturation process from opal-A(?), to opal-CT, to quartz, as indicated by the presence of opal-CT precursor textures in many chert nodules. Although field and petrographic evidence argues for an early marine origin for chert in the Arbuckle Group, the light δ18O values are inconsistent with this origin. Meteoric resetting of the δ18O values of the chert during exposure of the carbonate platform best explains the light δ18O values because: (i) the δ18O values of chert nodules decrease with decreasing δ18O values of host limestones, and (ii) chert nodules from early dolomite, which underwent more extensive meteoric modification than associated limestones, have lighter δ18O values than chert nodules from limestones. Increasing recrystallization of chert nodules by meteoric water resulted in progressive 18O depletion and (quartz) crystal enlargement.  相似文献   

12.
The Mendip Hills, located on the north-western margin of the Wessex Basin, clearly show the onlap of Upper Triassic to Middle Jurassic sediments onto folded Palaeozoic strata. Recent field mapping on the crest of the Beacon Hill pericline at Tadhill, near Frome, augmented by a suite of shallow boreholes, proved up to 6.2 m of glauconitic grey and green silty sand. These glauconitic sands rest unconformably on Silurian volcanic rocks and Devonian sandstone. Lithological and ipalaeontological analyses of these glauconitic sands indicate that they are part of the Lower Cretaceous Upper Greensand Formation. This provides the first evidence for the Albian transgression across the Mendip Hills. The implications for the Cretaceous overstep on the margins of the Wessex Basin, and the analogies with the Upper Greensand succession in Devon are discussed.  相似文献   

13.
In Upper Jurassic carbonate turbidites of the Betic mountains (southern Spain), chert occurs in three morphologies: bedded chert, nodular chert and mottled chert. The last refers to a weak dispersed and selective silification which gives a speckled appearance to the rock. The three types of chert are formed by replacement of limestones and are associated with different calcareous facies. Turbidite packstones of Saccocoma and peloids, and turbidite lime mudstones of pelagic material contain bedded and nodular cherts. The silicification textures are mainly micro- and cryptocrystalline quartz, with local chalcedonic quartz (both length-fast and length-slow) which is more common in the packstones. Only mottled chert is produced where calcareous breccia beds are silicified. Mottled chert consists of micro- and cryptocrystalline quartz, length-slow chalcedonic quartz and mosaics or individual crystals of euhedral megaquartz. Beds and nodules are the result of early diagenetic silicification, with silica derived from the calcitization and dissolution of radiolarians and, subordinately, sponge spicules, whereas mottled chert is the consequence of later silicification in a probably Mg-rich environment. Early silicification is mainly confined to turbidite beds and only rarely occurs in the interbedded pelagic limestones. Turbidite sedimentation favours silicification because rapid burial of the transported siliceous tests prevents silica from the dissolution of tests passing into overlying sea water. A silica-rich interstitial fluid develops in the turbidite layer and this migrates to more permeable zones giving rise to bedded and nodular chert.  相似文献   

14.
Chert in the Cow Head Group is mainly a replacement of limestone and shale and, to a lesser extent, an interparticle cement. Its field occurrences are distinct as: (1) silicified margins on coarse conglomerates and thinly bedded limestones; (2) nodules within limestone and shale; (3) pervasively silicified beds of limestone and shale; and (4) clasts or partial replacement of clasts within conglomerate. Radiolarians and sponge spicules are composed of microquartz or calcite and are particularly common in the Ordovician part of the succession where most chert occurs. In limestone spatially associated with chert, the use of cathodoluminescence demonstrates that calcite-replaced radiolarians and spicules are volumetrically more important than realized through transmitted-light petrography. Petrographic relations between siliceous and rare pyritized radiolarians further indicate that these particles may be dissolved prior to compaction. No trace of their former existence remains, other than indirectly through the presence of silicified limestone and shale. Crushed grains cemented by chalcedony indicate that chert was precipitated during or after compaction. The history of silicification and the replacement or dissolution of siliceous bioclasts is protracted, ranging from near the sediment-water interface, where it is concomitant with early limestone lithification, to deeper burial, postdating mechanical compaction.  相似文献   

15.
广西钦防海槽迁移与沉积-构造转换面   总被引:13,自引:0,他引:13       下载免费PDF全文
广西的钦州-防城-带,素以钦防海槽称之,系指加里东期构造运动后,扬子与华夏陆块间的“残留海”。其两侧为古隆所夹持,西为大明山古隆起,东为云开大山古隆起,其间划分为四个构造单元,由东向西依次为:博白坳陷,六万大山隆起,钦州坳陷和十万大山坳陷。现构造形迹的排列,反馈防海槽在早古生代至中生代间深海盆或浅海深水盆地在构造和沉积上有自东向西迁移的特点。晚古生代盆地迁移过程至少有八个沉积-构造转换面可记录盆地的构造演化:第1转换面为早奥陶世与晚寒武世间的沉积界面;第2转换面为早志留世与晚奥陶世间的沉积界面;第3转换面为早泥盆世早期与晚志留世间的海侵上超面;第4转换面为中泥盆世的海侵上超面;第5转换面为中二叠世与晚二叠世间的沉积界面;第6转换面为早三叠世的海侵面;第7转换面为中晚三叠世与早三叠世间的沉积界面;第8转换面为早侏罗世与晚三叠世间的沉积界面。前两个界面为盆山转换面,与华南加里东构造运动过程相耦合,为挤压的构造背景;第3界面为水下间断面,下泥盆统与上志留统为不连续沉积,在构造上应是挤压机制下的破裂不整合,也是加里东期构造运动的响应;第4界为海西期的海侵上超面,与盆地走滑拉张同步;第5界面则反馈于印支期造山的初始阶段,第6界面为中生代盆地迁移转换面;第7界面为印支期造山过程的盆地转换面;第8界面为燕山期造山造盆转换面。其转换面性质的转化,代表钦防海槽可能是个复杂大陆边缘前陆盆地演化史。  相似文献   

16.
Nodular cherts can provide a window on the original sediment composition, diagenetic history and biota of their host rock because of their low susceptibility to further diagenetic alteration. The majority of Phanerozoic cherts formed by the intraformational redistribution of biogenic silica, particularly siliceous sponge spicules, radiolarian tests and diatom frustules. In the absence of a biogenic silica source, Precambrian cherts necessarily had to have had a different origin than Phanerozoic cherts. The Mesoproterozoic Belt Supergroup in Glacier National Park contains a variety of chert types, including silicified oolites and stromatolites, which have similar microtextures and paragenesis to Phanerozoic cherts, despite their different origins. Much of the silicification in the Belt Supergroup occurred after the onset of intergranular compaction, but before the main episode of dolomitization. The Belt Supergroup cherts probably had an opal-CT precursor, in the same manner as many Phanerozoic cherts. Although it is likely that Precambrian seas had higher silica concentrations than at present because of the absence of silica-secreting organisms, no evidence was observed that would suggest that high dissolved silica concentrations in the Belt sea had a significant widespread effect on silicification. The rarity of microfossils in Belt Supergroup cherts indicates that early silicification, if it occurred, was exceptional and restricted to localized environments. The similarity of microtextures in cherts of different ages is evidence that the silicification process is largely controlled by host carbonate composition and dissolved silica concentration during diagenesis, regardless of the source of silica.  相似文献   

17.
滇西保山施甸地区中泥盆世沉积相特征及沉积环境分析   总被引:2,自引:1,他引:1  
本文运用现代沉积学的理论和手段对滇西保山施甸地区的中泥盆统进行了研究。在详细岩相、生物相特征分析的基础上,划分出泥晶灰岩相、塌积(角)砾岩相、风暴岩、亮晶灰岩相及生物灰岩相5种岩相,对工作区中泥盆世的古地理面貌、沉积环境及主要沉积作用作了较为详尽的阐述。作者认为中泥盆世该区及整个三江地区处于最大海侵期。中泥盆统主要为一套正常开放的陆棚沉积,并发育有典型碳酸盐岩风暴沉积。  相似文献   

18.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

19.
The Coopers Creek Limestone represents an Early Devonian redeposited carbonate accumulation and records the evolution of a carbonate slope in the southeastern portion of the Melbourne Trough. During the earliest Devonian, the underlying Boola Formation was deposited, probably as turbidites, in a moderately deep‐water setting. The presence of chert and greenstone clasts in the top of the formation indicates exposure of an area of Cambrian greenstones in this part of the Melbourne Trough, as a result of uplift associated with the earliest Devonian Bowning Orogeny. This uplift provided ideal conditions for carbonate production along the margin of the exposed landmass. The periodic transportation of carbonate material downslope resulted in the accumulation of the Coopers Creek Limestone. Initially, in the early Pragian, turbidity currents deposited clayey biomicrites and biopelmicrites on a relatively gentle slope. However, the rapid build‐up of carbonate sand banks at the shelf margin steepened the gradient from the shelf into the basin and a bypass margin began to develop. Grainflows deposited pelsparites and biopelsparites and the presence of debris flow breccias indicates erosion of lithified limestone by channelling. Continued carbonate build‐up led to the development of a rimmed reef margin in the earliest Emsian, with a steep fore‐reef gradient. Large blocks of reefal limestone fell or rolled to the base of the slope, to accumulate as reefal megabreccias at the top of the Coopers Creek Limestone. Carbonate production abruptly ceased in the early Emsian, due to the uplift of a quartzo‐micaceous source to the east during the initial stages of the Tabberabberan Orogeny. This uplift supplied abundant terrigenous material into the Melbourne Trough to be deposited as the turbidites of the Walhalla Group, which deeply buried the limestone accumulation.  相似文献   

20.
The sedimentary–diagenetic structure stromatactis is widespread in Palaeozoic spiculitic carbonate mud mounds, but occurs only sporadically in Mesozoic sponge carbonate mud mounds. Comparative analysis of Palaeozoic and Mesozoic stromatactis limestones suggests that this variation results from the degree of siliceous sponge skeletal rigidity and the amount of internal sediment accumulation in the original cavity network. Partial to entire filling by internal sediment resulted in a continuum, from a small amount of internal sediment and large amount of cement (stromatactis, common in the Palaeozoic), to only internal sediments (aborted stromatactis, common in the Mesozoic). These observations match independent lines of evidence concerning the siliceous sponge evolution and sediment recycling (e.g. bioerosion) across the Palaeozoic to Mesozoic biotic revolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号