首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Passive structural control techniques are generally used as seismic rehabilitation and retrofit methodologies for existing structures. A poorly explored and exciting opportunity within structural seismic control research is represented by the possibility to design new structural forms and configurations, such as slender buildings, without compromising the structural performance through an integrated design approach. In this paper, with reference to viscous dampers, an integrated seismic design procedure of the elastic stiffness resources and viscoelastic properties of a dissipative bracing‐damper system is proposed and developed to ensure a seismic design performance, within the displacement‐based seismic design, explicitly taking into account the dynamic behaviour both of the structural and control systems. The optimal integrated seismic design is defined as the combination of the variables that minimizes a suitable index, representing an optimized objective function. Numerical examples of the proposed integrated cost‐effectiveness seismic design approach both on an equivalent SDOF system and a proportionally damped MDOF integrated system are developed defining the design variables, which minimize the cost index. Validation of the effectiveness of the proposed integrated design procedure is carried out by evaluating the average displacement of the time‐history responses to seven unscaled acceleration records selected according to EC8 provisions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermalmechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.  相似文献   

6.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
For the purpose of estimating the earthquake response, particularly the story drift demand, of reinforced concrete (R/C) buildings with proportional hysteretic dampers, an equivalent single‐degree‐of‐freedom (SDOF) system model is proposed. Especially in the inelastic range, the hysteretic behavior of an R/C main frame strongly differs from that of hysteretic dampers due to strength and stiffness degradation in R/C members. Thus, the proposed model, unlike commonly used single‐spring SDOF system models, differentiates the restoring force characteristics of R/C main frame and hysteretic dampers to explicitly take into account the hysteretic behavior of dampers. To confirm the validity of the proposed model, earthquake responses of a series of frame models and their corresponding equivalent SDOF system models were compared. 5‐ and 10‐story frame models were studied as representative of low‐ and mid‐rise building structures, and different mechanical properties of dampers—yield strength and yield deformation—were included to observe their influence on the effectiveness of the proposed model. The results of the analyses demonstrated a good correspondence between estimated story drift demands using the proposed SDOF system model and those of frame models. Moreover, the proposed model: (i) led to better estimates than those given by a single‐spring SDOF system model, (ii) was capable of estimating the input energy demand and (iii) was capable of estimating the total hysteretic energy and the participation of dampers into the total hysteretic energy dissipation, in most cases. Results, therefore, suggest that the proposed model can be useful in structural design practice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Knowledge of maximum velocity is essential for the design of structures and especially those with supplementary dampers. Although the nonlinear time history analysis leads to reliable estimation of actual velocities, it seems to be complicated for the everyday engineering practice due to the increased computational cost. This paper proposes an alternative for single‐degree‐of‐freedom (SDOF) systems to estimate the actual velocity in a straightforward and effective manner. More specifically, this study examines the inelastic velocity ratio (IVR), i.e., the ratio of the maximum inelastic to the maximum elastic velocity of an SDOF system, the knowledge of which allows the computation of maximum inelastic velocity directly from the corresponding elastic counterpart. The proposed method is general and can be applied to both conventional structures and structures with supplementary dampers. Extensive parametric studies are conducted to obtain expressions for IVR in terms of the period of vibration, viscous damping ratio, force reduction factor, and soil class. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The determination of displacement demands for masonry buildings subjected to seismic action is a key issue in the performance-based assessment and design of such structures. A technique for the definition of single-degree-of-freedom (SDOF) nonlinear systems that approximates the global behaviour of multi-degree-of-freedom (MDOF) 3D structural models has been developed in order to provide useful information on the dependency of displacement demand on different seismic intensity measures. The definition of SDOF system properties is based on the dynamic equivalence of the elastic properties (vibration period and viscous damping) and on the comparability with nonlinear hysteretic behaviour obtained by cyclic pushover analysis on MDOF models. The MDOF systems are based on a nonlinear macroelement model that is able to reproduce the in-plane shear and flexural cyclic behaviour of pier and spandrel elements. For the complete MDOF models an equivalent frame modelling technique was used. The equivalent SDOF system was modelled using a suitable nonlinear spring comprised of two macroelements in parallel. This allows for a simple calibration of the hysteretic response of the SDOF by suitably proportioning the contributions of flexure-dominated and shear-dominated responses. The comparison of results in terms of maximum displacements obtained for the SDOF and MDOF systems demonstrates the feasibility and reliability of the proposed approach. The comparisons between MDOF and equivalent SDOF systems, carried out for several building prototypes, were based on the results of time-history analyses performed with a large database of natural records covering a wide range of magnitude, distance and local soil conditions. The use of unscaled natural accelerograms allowed the displacement demand to be expressed as a function of different ground motion parameters allowing for the study of their relative influence on the displacement demand for masonry structures.  相似文献   

10.
This paper evaluates the hysteretic behavior of an innovative compressed elastomer structural damper and its applicability to seismic‐resistant design of steel moment‐resisting frames (MRFs). The damper is constructed by precompressing a high‐damping elastomeric material into steel tubes. This innovative construction results in viscous‐like damping under small strains and friction‐like damping under large strains. A rate‐dependent hysteretic model for the compressed elastomer damper, formed from a parallel combination of a modified Bouc–Wen model and a non‐linear dashpot is presented. The model is calibrated using test data obtained under sinusoidal loading at different amplitudes and frequencies. This model is incorporated in the OpenSees [17] computer program for use in seismic response analyses of steel MRF buildings with compressed elastomer dampers. A simplified design procedure was used to design seven different systems of steel MRFs combined with compressed elastomer dampers in which the properties of the MRFs and dampers were varied. The combined systems are designed to achieve performance, which is similar to or better than the performance of conventional steel MRFs designed according to current seismic codes. Based on the results of nonlinear seismic response analyses, under both the design basis earthquake and the maximum considered earthquake, target properties for a new generation of compressed elastomer dampers are defined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a direct static design method for structures with metal yielding dampers is proposed based on a new design target called the seismic capacity redundancy indicator (SCRI). The proposed method is applicable to the design of elastic‐plastic damped structures by considering the influence of damper on different structural performance indicators separately without the need for iteration or nonlinear dynamic analysis. The SCRI—a quantitative measure of the seismic capacity redundancy—is defined as the ratio of the seismic demand required by the target performance limit to the design seismic demand. Changes in the structural SCRI are correlated with the parameters of the supplemental dampers so that the dampers can be directly designed according to a given target SCRI. The proposed method is illustrated through application to a 12‐story reinforced‐concrete frame, and increment dynamic analysis is performed to verify the effectiveness of the proposed method. The seismic intensity corresponding to the target structural performance limit is regarded as a measure of the structural seismic capacity. The required seismic intensity increases after the structure is equipped with the designed metal yielding dampers according to the expected SCRI. It is concluded that the proposed method is easy to implement and feasible for performance‐based design of metal yielding dampers.  相似文献   

13.
直接基于位移法进行抗震设计时,最初结构的刚度和承载力均是未知的,设计中需假定预期设计结构的振型模式和由此得到的结构侧向地震力分布,这样的设计结果会产生一定的偏差.针对此问题,提出了改进直接基于位移的抗震设计方法,即首先初步设计结构,根据初设结构的振型模式等效单自由度体系,结合目标位移反向设计结构刚度,将设计结构的刚度与初设结构刚度比较,进行调整设计,最后进行承载力设计.程序中为减少迭代次数,定义了结构竖向刚度调整系数,用以简化结构弹性刚度的确定过程,从而实现设计结构在相应地震设防水准下满足预期位移的控制要求.最后通过算例证明了该方法具有一定的准确性.  相似文献   

14.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.  相似文献   

17.
This paper presents a direct displacement-based design procedure for seismic retrofit of existing buildings using nonlinear viscous dampers according to equivalent linear systems. Unlike conventional methods, the equivalent linear viscous damping provided by the nonlinear viscous dampers is derived based on the assumption that the average energy dissipated between the linear and the nonlinear viscous dampers is equal. Also, the equivalent period and viscous damping for the equivalent linear systems which are used for representing the behavior of bare frames (the buildings without dampers) are derived from the concept of average storage energy and average dissipated energy, respectively. It is shown from nonlinear time-history analyses that the nonlinear action of the retrofitted structures can be reasonably captured by the presented direct displacement-based procedure.  相似文献   

18.
Based on the results of an extensive parametric study of elastic and inelastic response of SDOF systems, in which the most important structural parameters were varied and ground motions of very different characteristics were taken into account, simple formulae for determining the seismic demand in SDOF systems with natural periods in the medium- and long-period range are proposed. Seismic demand is expressed in terms of the mean values of maximum relative displacements and maximum input energy. These results can be used to provide rough estimates of structural behaviour when different damage models are applied. As well as this, the proposed formulae can be used to construct design spectra of the Newmark-Hall type.  相似文献   

19.
A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non‐linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a general framework for predicting the residual drift of idealized SDOF systems that can be used to represent non‐degrading structures, including those with supplemental dampers. The framework first uses post‐peak oscillation analysis to predict the maximum ratio of residual displacement to the peak transient displacement in a random sample. Then, residual displacement ratios obtained from nonlinear time‐history analyses using both farfield and near‐fault‐pulse records were examined to identify trends, which were explained using the oscillation mechanics of SDOF systems. It is shown that large errors can result in existing probability models that do not capture the influence of key parameters on the residual displacement. Building on the observations that were made, a general probability distribution for the ratio of residual displacement to the peak transient displacement that more accurately reflects the physical bounds obtained from post‐peak oscillation analysis is proposed for capturing the probabilistic residual displacement response of these systems. The proposed distribution is shown to be more accurate when compared with previously proposed distributions in the literature due to its explicit account of dynamic and damping properties, which have a significant impact on the residual displacement. This study provides a rational basis for further development of a residual drift prediction tool for the performance‐based design and analysis of more complex multi‐degree‐of‐freedom systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号