首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surface speciation and leaching kinetics of 38- to 75-μm sphalerite (0.45 wt.% Fe) particles reacted in O2 purged perchloric acid (at pH 1.0) at 25, 40, 60, and 85 °C over a leach period of 144 h were investigated. In all cases, an initial rapid leach rate is observed followed by a slower leach rate. These two leach regimes can each be adequately modeled using straight-line interpolation, and thus two activation energies (Ea) have been derived. Ea for the fast and slow Zn dissolution rates were 33 ± 4 kJ mol−1 and 34 ± 4 kJ mol−1 respectively, suggesting the same rate-determining step.  相似文献   

2.
The energetics of multicomponent diffusion in molten CaO-Al2O3-SiO2 (CAS) were examined experimentally at 1440 to 1650°C and 0.5 to 2 GPa. Two melt compositions were investigated: a haplodacitic melt (25 wt.% CaO, 15% Al2O3, and 60% SiO2) and a haplobasaltic melt (35% CaO, 20% Al2O3, and 45% SiO2). Diffusion matrices were measured in a mass-fixed frame of reference with simple oxides as end-member components and Al2O3 as a dependent variable. Chemical diffusion in molten CAS shows clear evidence of diffusive coupling among the components. The diffusive flux of SiO2 is significantly enhanced whenever there is a large CaO gradient that is oriented in a direction opposite to the SiO2 gradient. This coupling effect is more pronounced in the haplodacitic melt and is likely to be significant in natural magmas of rhyolitic to andesitic compositions. The relative magnitude of coupled chemical diffusion is not very sensitive to changes in temperature and pressure.To a good approximation, the measured diffusion matrices follow well-defined Arrhenius relationships with pressure and reciprocal temperature. Typically, a change in temperature of 100°C results in a relative change in the elements of diffusion matrix of 50 to 100%, whereas a change in pressure of 1 GPa introduces a relative change in elements of diffusion matrix of 4 to 6% for the haplobasalt, and less than 5% for the haplodacite. At a pressure of 1 GPa, the ratios between the major and minor eigenvalues of the diffusion matrix λ12 are not very sensitive to temperature variations, with an average of 5.5 ± 0.2 for the haplobasalt and 3.7 ± 0.6 for the haplodacite. The activation energies for the major and minor eigenvalues of the diffusion matrix are 215 ± 12 and 240 ± 21 kJ mol−1, respectively, for the haplodacite and 192 ± 8 and 217 ± 14 kJ mol−1 for the haplobasalt. These values are comparable to the activation energies for self-diffusion of calcium and silicon at the same melt compositions and pressure. At a fixed temperature of 1500°C, the ratios λ12 increase with the increase of pressure, with λ12 varying from 2.5 to 4.1 (0.5 to 1.3 GPa) for the haplodacite and 4 to 6.5 (0.5 to 2.0 GPa) for the haplobasalt. The activation volumes for the major and minor eigenvalues of the diffusion matrix are 0.31 ± 0.44 and 2.3 ± 0.8 cm3 mol−1, respectively, for the haplodacite and −1.48 ± 0.18 and −0.42 ± 0.24 cm3 mol−1 for the haplobasalt. These values are quite different from the activation volumes for self-diffusion of calcium and silicon at the same melt compositions and temperature. These differences in activation volumes between the two melts likely result from a difference in the structure and thermodynamic properties of the melt between the two compositions (e.g., partial molar volume).Applications of the measured diffusion matrices to quartz crystal dissolution in molten CAS reveal that the activation energy and activation volume for quartz dissolution are almost identical to the activation energy and activation volume for diffusion of the minor or slower eigencomponent of the diffusion matrix. This suggests that the diffusion rate of slow eigencomponent is the rate-limiting factor in isothermal crystal dissolution, a conclusion that is likely to be valid for crystal growth and dissolution in natural magmas when diffusion in liquid is the rate-limiting factor.  相似文献   

3.
The AlOx1-3 (Ox = oxalate) species were identified in 0.6 M aqueous NaCl by 13C nuclear magnetic resonance (NMR). Rate constants and activation parameters for intramolecular cis/trans isomerization of the Werner-type AlOx2 complex (k(298 K) = 5 s−1, ΔH# = 67 ± 5 kJ mol−1, ΔS# = −6 ± 6 J mol−1 K−1, the rate determining step could be the breaking of the Al-O(C=O) bond) and a very slow intermolecular ligand exchange reaction of AlOx33− complex and the free ligand (k30(298 K) = 6.6 · 10−5 s−1, ΔH# = 164 ± 17 kJ mol−1, ΔS# = 225 ± 51 J mol−1 K−1, D/Id mechanism) were determined by dynamic 1D and 2D 13C NMR measurements. Mixed complexes, AlFOx, AlFOx22-, AlF2Ox, and AlF2Ox23-, with overall stability (logβ) of 11.53 ± 0.03, 15.67 ± 0.03, 15.74 ± 0.02, and 19.10 ± 0.04 were measured by potentiometry using pH- and fluoride-selective electrodes and confirmed by 13C and19F NMR. The role of these complexes in gibbsite dissolution was modeled. The mixed Al(III)-Ox2--F complexes have to be considered as the chemical speciation of Al(III) in natural waters is discussed.  相似文献   

4.
A strong anomaly was found in the heat capacity of Co3O4 between 1000 K and the decomposition temperature. This anomaly is not related to the decomposition of Co3O4 to CoO. The measured entropy of transition, S=46±4 J mol-1 K-1 of Co3O4, supports the interpretation that this anomaly reflects a spin unpairing transition in octahedrally coordinated Co3+ cations. Experimental values of heat capacity, heat content and entropy of Co3O4 in the high temperature region are provided. The enthalpy of the spin unpairing transition is 53±4 kJ mol-1 of Co3O4.  相似文献   

5.
High temperature oxide melt solution calorimetry was used to study the energy associated with dislocations in quartz by comparing undeformed and deformed single crystals of synthetic quartz. Samples were deformed at 698 K, 1000–1500 MPa at a strain rate of 10–5 sec–1. Two sets of calorimetric measurements were made: (i) using a Pt capsule as a container for powdered sample, and (ii) using pellets made from sample powder without any container. For the first set of measurements, the undeformed sample with a dislocation density of enthalpy is sum of heat content H 973-H 295 and enthalpy of solution in molten lead borate at 973 K of 39.22 ± 1.00 kJ mol–1, while the sample deformed in the dislocation creep regime with a dislocation density of 6 × 1010 to 1 × 1011 cm–2 gave an enthalpy of 38.59 ± 0.78 kJ mol–1. For the second set of measurements the measured enthalpy of the undeformed sample was 38.87 ± 0.31 kJ mol–1, and that of a deformed sample with a dislocation density of 3 × 1010 to 1 × 1011 cm–2 was 38.24 ± 0.58 kJ mol–1.The present study and previous theoretical calculations and estimates are consistent and suggest that the energy associated with dislocations in quartz is 0.6 ± 0.6 kJ mol–1 for a dislocation density of 1011 cm–2; a precise value is difficult to determine because of the overlapping errors. These results indicate that for geologically realistic dislocation densities, the maximum excess energy due to dislocations would be 0.5 kJ mol–1 for most minerals; the exact value would depend on the Burgers vector as well as the shear modulus.  相似文献   

6.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

7.
采用Netzsch STA409PC同步热分析仪研究了苏州高岭石(KW125)在30℃~1 200℃间的热分解过程。采用"Netzsch Thermokinetics software"软件对其脱羟基机理进行了非等温动力学研究。基于等转化法评价了反应活化能及反应进程的依存关系。基于多元非线性拟合确定了最可能反应机理及动力学参数。研究结果表明:苏州高岭石在30℃~1200℃温度范围的热分解为脱羟基与相转变等两个阶段。其脱羟基(30℃~800℃)过程中活化能呈现三个变化:197.68 kJ/mol±12.95 kJ/mol→181.04kJ/mol±18.98kJ/mol→269.7kJ/mol±14.64kJ/mol。脱羟基反应遵循三步连续反应模型t:f,f;(D3-Fn-Fn),一个三维扩散(D3)反应,然后是两个n序列(Fn)反应。第一步,f(α)=3(1-α)^2/3/(2(1-(1-α)^1/3),E1=185.27 kJ/mol,logA=10.83s^-1;第二步,f(α)=(1-α)^n,n=1.75,E2=187.81 kJ/mol,logA=10.32s^-1;第三步,f(α)=(1-α)^n,n=4.4,E3=262.70 kJ/mol,logA=13.26s^-1。  相似文献   

8.
It is important to clarify the migration behavior of hydrogen gas dissolved in water-saturated, compacted bentonite, which is a promising material for geologic disposal of high-level waste and TRU waste disposal. The diffusion coefficients of helium, which can be detected under extremely low background conditions, in water-saturated, compacted Na-montmorillonite were determined as a function of temperature by a transient diffusion method. The activation energies for diffusion of helium were then obtained. The activation energies were from 6.9 ± 4.8 to 19 ± 2.8 kJ mol 1 and were regarded to be independent of dry density. The activation energies of helium in water-saturated Na-montmorillonite were roughly equal to those in bulk water, 14.9 kJ mol 1, and in ice, from 11 to 13 kJ mol 1. It is possible that helium diffuses not only in pore water but also in interlayer water.  相似文献   

9.
 The presence of zeolitic water, with a reversible hydration behaviour, was determined by structural and kinetic studies on synthetic mixite BiCu6(OH)6(AsO4)3·nH2O (n≤3). X-ray diffraction and infrared-spectroscopic investigations were performed on single crystals. Isothermal thermogravimetric experiments were carried out to determine the reaction kinetics of the de- and rehydration processes. The single-crystal structure refinement of a fully hydrated crystal yielded five partially occupied Ow positions (Ow=oxygen atom of a H2O molecule) within the tube-like channels of the hexagonal [BiCu6(OH)6(AsO4)3] framework. For the partially dehydrated form, with n≈1, at least two of these sites were found to be occupied significantly. In addition, the structural investigations allowed two different intra-framework hydrogen bonds to be distinguished that are independent of the extra-framework water distribution and are responsible for the stability of the self-supporting framework. The kinetic analysis of the rate data in the 298–343K temperature range shows that the dehydration behaviour obeys a diffusion-controlled reaction mechanism with an empirical activation energy of E a dehyd=54±4 kJ mol–1. A two-stage process controls rehydration of which the individual steps were attributed to an initial surface-controlled (E a hyd-I=6±1 kJ mol–1) and subsequent diffusion-controlled reaction mechanism (E a hyd-II=12±1 kJ mol–1). The estimated hydration enthalpy of 42±5 kJ mol–1 supports the distribution model of molecular water within the channels based on a purely hydrogen-bonded network. Received June 26, 1996 / Revised, accepted November 11, 1996  相似文献   

10.
Fluoride-hydroxyl exchange equilibria between phlogopite-pargasite and phlogopite-tremolite mineral pairs were experimentally determined at 1,173K, 500 bars and 1,073–1,173 K, 500 bars respectively. The distribution of fluorine between phlogopite and pargasite was found to favor phlogopite slightly, G ex . (1,173 K)=–1.71 kJ anion–1, while in the case of phlogopite-tremolite, fluorine was preferentially incorporated in the mica, G ex . (1,073)=– 5.67 kJ anion–1 and G ex . (1,173K)=–5.84 kJ anion–1. These results have yielded new values of entropy and Gibbs energy of formation for fluortremolite, S f =–2,293.4±16.0JK–1 mol–1 and G f = –11,779.3±25.0 kJ mol–1, respectively. In addition, F-OH mineral exchange equilibria support a recent molten oxide calorimetric value for the Gibbs energy of fluorphlogopite, G f =–6,014.0±7.0 kJ mol–1, which is approximately 40 kJ mol–1 more exothermic than the tabulated value.This work performed in part at Sandia National Laboratories supported by the U.S. Department of Energy, DOE, under contract number DE-AC04-76DP00789  相似文献   

11.
 The IR spectrum of ammonium-exchanged natural analcime (basalt, Nidym River, Siberian platform) exhibits several features that suggest a lowered symmetry for the NH4 + ion and that this is influenced by hydrogen bonding within the framework. These features are: the pronounced splitting into three components and high-frequency shift of the ν4-bending mode; appearance of the ν1-stretching mode which is predicted to become IR-active when the ideal T d symmetry of NH4 + ion is violated, and the low-frequency shift of the ν1- and ν3-stretching modes. The absence of absorption lines in the 1800–2400-cm−1 region indicates that hydrogen bonding between the framework and the NH+ 4 ion is very weak. The three-component splitting of the ν4-bending mode indicates that the symmetry of NH+ 4 ion is lower than C3v. This implies that at least two N–H bonds of the NH+ 4 ion are disturbed by hydrogen bonding. Computer analysis of the normal vibrations of the NH+ 4 molecule for different symmetry types (using harmonic approximation) indicates that the best fit to the observed ν4 triplet frequencies for C1 symmetry implies a deviation of the valent angle ∠H–N–H from ideal T d symmetry of around ±2.5°. The factors governing the behaviour of the NH+ 4 ion in the analcime structure are discussed. The geometry of the nearest environment of the NH+ 4 ion in the analcime structure is analyzed with respect to the present IR data. Received: 2 January 2002 / Accepted: 26 June 2002 Acknowledgements We thank Dr. D. Harlov and an anonymous reviewer for their helpful comments, as well as Dr. I.A. Belitsky and Dr. S.V. Goryainov for discussion of the material. This work is supported by RFBR grants 01-05-65414, 00-05-65305 and 02-05-65313.  相似文献   

12.
 The kinetics of the dehydroxylation of chrysotile was followed in situ at high temperature using real-time conventional and synchrotron powder diffraction (XRPD). This is the first time kinetics parameters have been calculated for the dehydroxylation of chrysotile. The value of the order of the reaction mechanism calculated using the Avrami model indicates that the rate-limiting step of the reaction is a one-dimensional diffusion with an instantaneous nucleation or a deceleratory rate of nucleation of the reaction product. Hence, the rate-limiting step is the one-dimensional diffusion of the water molecules formed in the interlayer region by direct condensation of two hydrogen atoms and an oxygen atom. The calculated apparent activation energy of the reaction in the temperature range 620–750 °C is 184 kJ mol−1. The diffusion path is along the axis of the fibrils forming the fibers. The amorphous or short-range ordered dehydroxylate of chrysotile is extremely unstable because forsterite readily nucleates in the Mg-rich regions. Moreover, it is less stable than the dehydroxylate of kaolinite, the so-called metakaolinite, which forms mullite at about 950 °C. This difference is interpreted in terms of the different nature of the two ions Mg2+ and Al3+ and their function as glass modifier and glass-forming ion, respectively. Received: 10 April 2002 / Accepted: 7 January 2003 Acknowledgements This work is part of a COFIN project (04 Scienze della Terra, NR 17, 2000) supported by MURST. Dr Dapiaggi is kindly acknowledged for help during the data collection at the Dipartimento di Scienze della Terra, University of Milan.  相似文献   

13.
The univariant reaction governing the upper stability of heulandite (CaAl2Si7O18·6H2O), heulandite=laumontite+3 quartz+2H2O (1), has been bracketed through reversal experiments at: 155±6° C, 1000 bar; 175±6° C, 1500 bar; and 180±8° C, 2000 bar. Reversals were established by determining the growth of one assemblage at the expense of the other, using both XRD and SEM studies. The standard molal entropy of heulandite is estimated to be 783.7±16 J mol–1 K–1 from the experimental brackets. Predicted standard molal Gibbs free energy and enthalpy of formation of heulandite are –9722.3±6.3 kJ mol–1 and –10524.3±9.6 kJ mol–1, respectively. The reaction (1), together with the reaction, stilbite=laumontite+3 quartz+3 H2O, defines an invariant point at which a third reaction, stilbite=heulandite+ H2O, meets. By combining the present experimental data with past work, this invariant point is located at approximately 600 bar and 140° C. Heulandite, which is stable between the stability fields of stilbite and laumontite, can occur only at pressures higher than that of the invariant point, for = P total.These results are consistent with natural parageneses in low-grade metamorphic rocks recrystallized in equilibrium with an aqueous phase in which is very close to unity.  相似文献   

14.
A natural quartz sample free of mineral and fluid inclusions was irradiated with a 200 MeV proton beam to produce spallogenic 21Ne, 3He and 4He. Temperature-dependent diffusivities of these three nuclides were then determined simultaneously by high precision stepped-heating and noble gas mass spectrometry. The outward mobility of proton-induced nuclides reflects diffusion through the quartz lattice. In the studied range of 70 to 400°C the helium diffusion coefficients exceed those of neon by 5-7 orders of magnitude. The implied diffusion parameters Ea = 153.7 ± 1.5 (kJ/mol) and ln(Do/a2) = 15.9 ± 0.3 (ln(s−1)) and Ea = 84.5 ± 1.2 (kJ/mol) and ln(Do/a2) = 11.1 ± 0.3 (ln(s−1)) for proton-induced 21Ne and 3He, respectively, indicate that cosmogenic neon will be quantitatively retained in inclusion-free quartz at typical Earth surface temperatures whereas cosmogenic helium will not. However, the neon diffusion parameters also indicate that diffusive loss needs to be considered for small (<1 mm) quartz grains that have experienced elevated temperatures. Since natural quartz often contains fluid inclusions which may enhance noble gas retentivity, these parameters likely represent an end-member case of purely solid-state diffusion. The ∼70 kJ/mol higher activation energy for neon diffusion compared to helium diffusion likely represents an energy barrier related to its ∼13% greater diameter and provides a fundamental constraint with which to test theories of solid state diffusion. The diffusion parameters for proton-induced 4He are indistinguishable from those for 3He, providing no evidence for the commonly expected inverse square root of the mass diffusion relationship between isotopes. We also find preliminary indication that increased exposure to radiation may enhance neon and helium retentivity in quartz at low temperatures.  相似文献   

15.
As a part of the safety assessment of the geological disposal of high-level radioactive waste, the effects of dry density and exchangeable cations on the diffusion process of Na+ ions in compacted bentonite were studied from the viewpoint of the activation energy for diffusion. The apparent self-diffusion coefficients of Na+ ions in compacted Na-montmorillonite and in a Na- and Ca-montmorillonite mixture were determined by one-dimensional, non-steady diffusion experiments at different temperatures and dry densities. A unique change in activation energy as a function of dry density was found for the Na+ ions in compacted Na-montmorillonite. The activation energy suddenly decreased from 18.1 to 14.1 kJ mol− 1 as the dry density increased from 0.9 to 1.0 Mg m− 3, whereas it increased to 24.7 kJ mol− 1 as the dry density increased to 1.8 Mg m− 3. Examination of the effect of exchangeable cations on the activation energies determined that the activation energies were almost constant, approximately 25 kJ mol− 1, for the montmorillonite specimens at a dry density of 1.8 Mg m− 3. However, three different activation energy values were obtained at a dry density of 1.0 Mg m− 3. These findings cannot be explained by the conventional diffusion model (the pore water diffusion model), which suggests that the predominant diffusion process alternates among pore water diffusion, interlayer diffusion, and external surface diffusion.  相似文献   

16.
The thermochemistry of well-characterized synthetic K-H3O, Na-H3O and K-Na-H3O jarosites was investigated. These phases are solid solutions that obey Vegard’s law. Electron probe microanalyses indicated lower alkali and iron contents than predicted from the theoretical end-member compositions, in agreement with thermal analyses, suggesting the presence of hydronium and “additional” water. The standard enthalpies of formation (ΔH°f) of K-H3O, Na-H3O and K-Na-H3O jarosites were determined by high-temperature oxide melt solution calorimetry. These enthalpies vary linearly with the K/H3O, Na/H3O and K/Na ratio, respectively. The enthalpy of formation of pure hydronium jarosite was also determined experimentally (ΔH°f = −3741.6 ± 8.3 kJ.mol−1), and it was used to evaluate ΔH°f for the end-members KFe3(SO4)2(OH)6 (ΔH°f = −3829.6 ± 8.3 kJ.mol−1) and NaFe3(SO4)2(OH)6 (ΔH°f = −3783.4 ± 8.3 kJ.mol−1). Finally, enthalpies of dehydration (loss of the “additional” water) of some jarosites were determined and found to be near the enthalpy of vaporization of water, suggesting that the “additional” water is weakly bonded in the structure.  相似文献   

17.
The effect of γ-irradiation on the structure, phase composition and kinetics of isothermal decomposition of natural textural brucite Mg(OH)2 has been investigated by Mn2+ electron paramagnetic resonance (EPR), proton magnetic resonance (PMR), X-ray diffraction (XRD) and weight loss methods. Starting from a 106-Gy dose, γ-irradiation (60Co, 13.8 Gys?1) is found to stimulate the formation of a new phase in the brucite structure, namely basic magnesium carbonate. The carbonate phase is assumed to form in brucite under γ-irradiation accordingly to the scheme \(\) (in the brucite structure). There is also a possibility that γ-irradiation forms particles with high reaction ability, CO?2 radicals and/or CO molecules, which can react with the brucite structure. Preliminary γ-irradiation (9.75 × 107 Gy) slows down the subsequent isothermal dehydroxylation of natural brucite, which can be explained by the formation of the new carbonate phase in the Mg(OH)2 structure. Dehydroxylation kinetics of both original and irradiated samples are interpreted by a two-stage nucleation model at 623, 648, 673, 698 and 723 K. The reaction rate is limited by the first nucleation stage rate (proton transition from an OH group near the reaction interface on a freed vacant orbital of an oxygen ion of the OH group in the nearest elementary cell, i.e., formation of a structured water molecule). The second-stage rate (water molecule removal from the structure and proton migration from the residual hydroxyl inside the structure) is about 1 order of magnitude higher. The activation energy of the limiting stage is 194 and 163 kJ mol?1 for the original and irradiated samples, respectively. Non-linear Arrhenius dependencies for the first-stage rate constants are related to the potential barrier reduction due to thermal fluctuations of large structural zones (with radii of about 20 and 81 Å in original and irradiated samples, respectively), whose ions form this barrier.  相似文献   

18.
Equilibrium in the chabazite-H2O system was investigated by isothermal thermogravimetric analysis over a large range of temperatures (from 23 to 315°C) and H2O-vapor pressures (from 0.03 to 28 mbar). Thermodynamic analysis of the phase-equilibrium data revealed the existence of three energetically distinct types of H2O, referred to as S-1, S-2, and S-3. At 23°C and 26 mbar of H2O-vapor pressure, chabazite has maximum H2O occupancies of 8.2, 11.1, and 3.1 wt.% for S-1, S-2, and S-3, respectively. During dehydration, S-1 H2O is lost first, followed by S-2 H2O and then S-3 H2O, with significant overlap for S-1 and S-2 as well as S-2 and S-3. The thermodynamics of chabazite-H2O were modeled using three independent equilibrium formulations for S-1, S-2, and S-3. These formulations yielded standard-state molar Gibbs free energy of hydration of −21.8 ± 0.6, −52.1 ± 1.8, and −111.7 ± 6.7 kJ/mol for S-1, S-2, and S-3. Standard-state molar enthalpies of hydration for each type of H2O are −65.6 ± 0.5, −100.1 ± 1.6, and −156.9 ± 6.2 kJ/mol, respectively. Integral molar values for the Gibbs free energy of hydration for each type of H2O are −19.0 ± 0.7, −40.1 ± 2.1, and −76.9 ± 9.6 kJ/mol, respectively. Integral molar values for the enthalpy of hydration for each type of H2O are −62.8 ± 0.6, −88.1 ± 1.9, and −122.2 ± 9.3 kJ/mol, respectively. Integration of the predicted total partial molar enthalpy of hydration for all three types of H2O over the full H2O content of chabazite gave an integral molar enthalpy of −39.65 ± 9.3 kJ/mol relative to liquid water. The thermodynamic data obtained for the hydration of natural chabazite were used to predict the hydration state of chemically similar chabazites under various temperatures and PH2O, ranging from 25 to 400°C and from 10−5 to 104 bars.  相似文献   

19.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

20.
The dehydroxylation reactions of chrysotile Mg3Si2O5(OH)4 and brucite Mg(OH)2 were studied under inert nitrogen atmosphere using isothermal and non-isothermal approaches. The brucite decomposition was additionally studied under CO2 in order to check the influence of a competing dehydroxylation/carbonation/decarbonisation reaction on the reaction kinetics. Isothermal experiments were conducted using in situ high-temperature X-ray powder diffraction, whereas non-isothermal experiments were performed by thermogravimetric analyses. All data were treated by model-free, isoconversional approaches (‘time to a given fraction’ and Friedman method) to avoid the influence of kinetic misinterpretation caused by model-fitting techniques. All examined reactions are characterised by a dynamic, non-constant reaction-progress-resolved (‘α’-resolved) course of the apparent activation energy E a and indicate, therefore, multi-step reaction scenarios in case of the three studied reactions. The dehydroxylation kinetics of chrysotile can be subdivided into three different stages characterised by a steadily increasing E a (α ≤ 15 %, 240–300 kJ/mol), before coming down and forming a plateau (15 % ≤ α ≤ 60 %, 300–260 kJ/mol). The reaction ends with an increasing E a (α ≥ 60 %, 260–290 kJ/mol). The dehydroxylation of brucite under nitrogen shows a less dynamic, but generally decreasing trend in E a versus α (160–110 kJ/mol). In contrast to that, the decomposition of brucite under CO2 delivers a dynamic course with a much higher apparent E a characterised by an initial stage of around 290 kJ/mol. Afterwards, the apparent E a comes down to around 250 kJ/mol at α ~ 65 % before rising up to around 400 kJ/mol. The delivered kinetic data have been investigated by the z(α) master plot and generalised time master plot methods in order to discriminate the reaction mechanism. Resulting data verify the multi-step reaction scenarios (reactions governed by more than one rate-determining step) already visible in E a versus α plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号