首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Realistic Modeling of Seismic Wave Ground Motion in Beijing City   总被引:5,自引:0,他引:5  
— Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.  相似文献   

2.
Along the deformation front of the North Ecuador–South Colombia (NESC) margin, both surface heat flow and trench sediment thickness show prominent along-strike variations, indicating significant spatial variations in sedimentation rate. Investigating these variations helps us address the important question of how trench sedimentation influences the temperature distribution along the interplate contact and the extent of the megathrust seismogenic zone. We examine this issue by analysing 1/ a new dense reflection data set, 2/ pre-stack depth migration of selected multichannel seismic reflection lines, 3/ numerous newly-identified bottom-simulating reflectors and 4/ the first heat probe measurements in the region. We develop thermal models that include sediment deposition and compaction on the cooling oceanic plate as well as viscous corner flow in the mantle wedge. We estimate that the temperature from 60–150 °C to 350–450 °C, commonly associated with the updip and downdip limits of the seismogenic zone, extends along the plate interface over a downdip distance of 160 to 190 ± 20 km. We conclude that the updip limit of the seismogenic zone for the great megathrust earthquake of 1979 is associated with low-temperature (60–70 °C) processes. Our models also suggest that 60–70% of the two-fold decrease in measured heat flow from 3°N to 2.8°N is related to an abrupt southward increase in sedimentation rate in the trench. Such a change may potentially induce a landward shift of the 60–150 °C isotherms, and thus the updip limit of the seismogenic zone, by 10 to 20 km.  相似文献   

3.
We examine seismic and eruptive activity at Fuego Volcano (14°29′N, 90° 53′W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ≈ 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes.Over 4000 A-type events were recorded January 3–7, 1977 (cumulative seismic energy ≈ 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ± 0.2 to 2.1 ± 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions.During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ± 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement.  相似文献   

4.
— We intend to reappraise the seismogenic potential of the geologic structures in the site of Algiers and its surroundings. A compilation of a working earthquake catalogue is first made using all events reported in all previous documentation available. However for the sake of homogeneity and a certain degree of reliability of the data, only revised seismic events with epicenter coordinates, magnitude and/or intensity are included. A tectonic setting of the zone under investigation and available fault plane solutions are presented. The results obtained in previous seismological studies of the most recent earthquakes of the area are also discussed. The findings highlight the great interest to be taken in the detailed and timely assessment of the seismic hazard of Algiers and its surroundings which is made possible by the realistic modelling of the scenario seismic input.  相似文献   

5.
The macroseismic field of the Balkan area   总被引:1,自引:0,他引:1  
A catalogue of 356 macroseimic maps which are available for the Balkan area was compiled, including information on the source parameters of the corresponding earthquakes, the macroseismic parameters of their strength and their macroseismic field. The data analysis of this catalogue yields new empirical relations for attenuation, which can be applied for the calibration of historical events, modelling of isoseismals and seismic hazard assessment. An appropriate analysis allowed the separation and estimation of the average values of the geometrical spreading, n, and anelastic attenuation factor, c, for the examined area which were found equal to –3.227 ± 0.112 and –0.0033 ± 0.0010. Scaling relations for the focal macroseismic intensity, If, and the epicentral intensity I0, versus the earthquake moment magnitude were also determined for each Balkan country. A gradual decrease of the order of 0.5 to 1 intensity unit is demonstrated for recent (after 1970) earthquakes in Greece. Finally the depths of the examined earthquakes as they robustly determined (error <5 km) on the basis of macroseismic data were found to have small values ( 10 km). However large magnitude earthquakes show higher focal depths ( 25 km), in accordance with an increase of the seismic fault dimensions for such events.  相似文献   

6.
The lithospheric models obtained for the Baltic Shield by using deep seismic soundings are discussed and results from different parts of the shield are compared with models achieved by the investigation of surface waves and of P to S converted waves. The results are found to agree rather well with each other particularly with regard to the first interface (at a depth of 10–15 km) and the whole thickness of the crust (c. 40 km). The macroseismic focal depth determinations of regional earthquakes are correlated with lithospheric structure. The main maximum in the focal depth distributions of Finnish earthquakes occur at a depth of 10–12 km. The geographical distribution of the earthquake epicentres suggests several seismo-active zones in the northern Baltic Shield. One new finding in this field concerns the Lapland zone, which runs in a north-westerly direction.  相似文献   

7.
In this paper we analyze the greatest plasma frequency, foF2, named critical frequency, observed by the Chung-Li ionosonde (25.0°N, 121.l°E) during the period of the Chi-Chi (23.87°N, 1 20.75°E) and the Chia-Yi (23.51°E, 120.4°E) earthquakes. The previous 15-day running mean and the associated standard deviation are utilized to construct the upper or lower bound for detecting the seismo-ionospheric perturbations. It is found that the perturbation appeals in 3–4 days prior to the Chi-Chi earthquake as well as 1–3 days prior to the Chia-Yi earthquake.  相似文献   

8.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

9.
On Oct. 4th, 1983 the area of Phlegraean Fields, near Naples (Southern Italy) was shaked by an earthquake of magnitude (M L) 4.0 that caused some damage in the town of Pozzuoli and its surroundings. This seismic event was the largest one recorded during the recent (1982–84) inflation episode occurred in the Phlegraean volcanic area, and a detailed macroseismic reconstruction of the event was carried out.Failing macroseismic data on other earthquakes occurred in Phlegraean Fields, the attenuation law of the intensity as a function of the distance as obtained for the Oct. 4th earthquake was compared with those obtained for other volcanic areas in central Italy —i.e., Tolfa, Monte Amiata — in order to check the reliability of the results obtained for Phlegraean Fields.The Blake's model of the earthquake of Oct. 4th, 1983 does not agree with the experimental data because isoseismals contain areas larger than those shown by the model. This result has been interpreted as an effect of energy focusing due to a reflecting layer 6–8 km deep.  相似文献   

10.
A method is suggested for the analysis of macroseismic intensity data in order to accurately determine an average attenuation structure of the upper part of the crust in an area. The method is based on a model which assumes that the observed intensities depend on source properties (radiation pattern, size, focal depth), geometrical spreading and anelastic attenuation. The method is applied to 13,008 intensity values, observed in corresponding sites of Greece and grouped (in 4228 groups), according to their spatial clustering in order to diminish observational errors and site effects. An average intensity attenuation coefficient,c=–0.0039±0.0016, corresponding to a quality factor, Q=350±140, is determined for the upper 20 km of the crust in this area. This value is relatively low, in good agreement with the relatively high heat flow and high seismic activity of this area. A byproduct of the present study is the determination, for each earthquake, of a macroseismic focal depth and of a macroseismic size, which is strongly correlatted with both the earthquake's magnitude and its seismic moment determined by independent methods.  相似文献   

11.
Deterministic Earthquake Scenarios for the City of Sofia   总被引:3,自引:0,他引:3  
— The city of Sofia is exposed to a high seismic risk. Macroseismic intensities in the range of VIII – X (MSK) can be expected in the city. The earthquakes that can influence the hazard in Sofia originate either beneath the city or are caused by seismic sources located within a radius of 40 km. The city of Sofia is also prone to the remote Vrancea seismic zone in Romania, and particularly vulnerable are the long-period elements of the built environment. The high seismic risk and the lack of instrumental recordings of the regional seismicity make the use of appropriate credible earthquake scenarios and ground-motion modelling approaches for defining the seismic input for the city of Sofia necessary. Complete synthetic seismic signals, due to several earthquake scenarios, were computed along chosen geological profiles crossing the city, applying a hybrid technique, which combines the modal summation technique and finite differences. The modelling takes into account simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. Acceleration, velocity and displacement time histories and related quantities of earthquake engineering interest (e.g., response spectra, ground-motion amplification along the profiles) have been supplied. The approach applied in this study allows us to obtain the definition of the seismic input at low cost, exploiting large quantities of existing data (e.g. geotechnical, geological, seismological). It may be efficiently used to estimate the ground motion for the purposes of microzonation, urban planning, retrofitting or insurance of the built environment, etc.  相似文献   

12.
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

13.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

14.
In this paper, data obtained by the 1995, 1996 and 1999 three GPS campaigns in North China have been used to study intraplate tectonic block movements in this area (N36°–N42°, and E112°–E120°). By a Bayesian inversion method, negative dislocation distributions on three main fault zones and individual relative movements between four intraplate tectonic blocks have been obtained based on these GPS data. The results show that the relative movements between four intraplate tectonic plates are several millimeters per year. The obtained negative dislocation values on the Front Tai-Hong Mountain fault are −5±2 mm/a in tensile component, and 2±2 mm/a in both strike and dip component, which indicates that this fault mainly suffers pull apart tectonic movements. On the Tangshan–Ninghe fault, the obtained negative dislocation values are −3±3 mm/a in dip, −2±2 mm/a in tensile and −1±3 mm/a in strike, which indicates that the east part of this fault still undergoes upward movement. On the Zhangjiako–Beipiao fault, the obtained negative dislocation values are −4±2 mm/a in strike, 0±2 mm/a in dip, and 1±2 mm/a in tensile, which indicates that this fault has sinistral strike movement. According to the inversion results, the southern part of the Zhangjiako-Beipiao fault suffers pull tectonic movements caused by recent upward movement of the eastern part. The pulling tectonic movements are almost totally blocked on the Front Tai-Hong Mountain fault and this fault is more likely to be a potential earthquake source.  相似文献   

15.
An instrumental validation is attempted of an innovative approach devoted to the quick individuation, from macroseismic data, of site amplification phenomena able to significantly modify seismic hazard levels expected on the basis of average propagation effects only. According to this methodology, two evaluations of hazard are performed at each investigated locality: the former, obtained by epicentral intensity data ‘reduced’ at the site through a probabilistic attenuation function and, the latter, computed by integrating such data with seismic effects actually observed at the site during past earthquakes. The comparison, for each locality, between these two hazard estimates allow to orientate the identification of those sites where local amplifications of earthquake ground motion could be significant. In order to check such methodology, indications obtained in this way from macroseismic data are compared with the estimates of transfer functions performed through the HVSR technique applied to microtremors. Results concerning municipalities located in a seismic area of Northern Italy indicate a good agreement between macroseismic and instrumental estimates.  相似文献   

16.
The occurrence of the Algiers earthquake (M 6.8) of May 21, 2003, has motivated the necessity to reassess the probabilistic seismic hazard of northern Algeria. The fact that this destructive earthquake took place in an area where there was no evidence of previous significant earthquakes, neither instrumental nor historical, strongly encourages us to review the seismic hazard map of this region. Recently, the probabilistic seismic hazard of northern Algeria was computed using the spatially smoothed seismicity methodology. The catalog used in the previous computation was updated for this review, and not only includes information until June 2003, but also considers a recent re-evaluation of several historical earthquakes. In this paper, the same methodology and seismicity models are utilized in an effort to compare this methodology against an improved and updated seismic catalog. The largest mean peak ground acceleration (PGA) values are obtained in northernmost Algeria, specifically in the central area of the Tell Atlas. These values are of the order of 0.48 g for a return period of 475 years. In the City of Algiers, the capital of Algeria, and approximately 50 km from the reported epicenter of this latest destructive earthquake, a new mean PGA value of 0.23 g is obtained for the same return period. This value is 0.07 g greater than that obtained in the previous computation. In general, we receive greater seismic hazard results in the surrounding area of Algiers, especially to the southwest. The main reason is not this recent earthquake by itself, but the significant increase in the mmax magnitude in the seismic source where the city and the epicenter are included.  相似文献   

17.
The centroid-moment tensor solutions of more than 300 earthquakes that occurred in the Himalayas and its vicinity regions during the period of 1977–1996 are examined. The resultant seismic moment tensor components of these earthquakes are estimated. The Burmese arc region shows prominent east–west compression and north–south extension with very little vertical extension. Northeast India and Pamir–Hindu Kush regions show prominent vertical extension and east–west compression. The Indian plate is subducting eastward beneath the northeast India and Burmese arc regions. The overriding Burmese arc has overthrust horizontally with the underthrusting Indian plate at a depth of 20–80 km and below 80 km depth, it has merged with the Indian plate making “Y” shape structure and as a result the aseismic zone has been formed in the region lying between 26°N–28°N and 91.5°E–94°E at a depth of 10–50 km. Similarly, the Indian plate is underthrusting in the western side beneath the Pamir–Hindu Kush region and the overriding Eurasian plate has overthrust it to form a “Y” shape structure at a depth of 10–40 km and below 60 km depth, it has merged with the Indian plate and both the plates are subducting below 60–260 km depth. Further south, the overriding Eurasian plate has come in contact with the Indian plate at a depth of 20–60 km beneath northwest India and Pakistan regions with left lateral strike slip motion.  相似文献   

18.
Anomalous soil-radon activity, including several spike-like surges over periods of 5, 2, and 2 1/2 months, and a year-long declining trend, preceded the most significant earthquakes of the central mid-continental region of North America during 1981 and early 1984. The 5-month period of erratic weekly radon activity, February–June 1981, was followed by a tremor of magnitudeM=4.0, 40 km from the monitoring site in the New Madrid seismic zone. An unusual earthquake swarm in central Arkansas, 160 km from the New Madrid seismic zone and 230 km from the monitoring site in the seismic zone, began in January 1982, shortly after a year-long declining trend in anomalous radon emanation. Earthquakes of magnitudes 4.5, 4.1, and 4.0 occurred at the swarm's outset in early 1982, fitting a pattern anticipated for the New Madrid seismic zone on the basis of the radon activity. Two periods of coincident peak radon emanation have since been observed in the Arkansas and New Madrid seismic regions, as have synchronous seismic pulses for the two separate areas.Two more recent periods of highly erratic soil-radon emanation, March–May 1983 and November–January 1984, were followed by a 4.3 earthquake in southwestern Illinois on 15 may 1983, and 3.5–3.6 tremors and swarm activity in the New Madrid seismic zone in late January and mid-February 1984. Prior to the 4.3 event, radon peaked at three widely separated monitoring sites 1–3 weeks before the tremor at distances of 120, 225, and 320 km from the epicentral region, the station at 225 km, in the New Madrid seismic zone, recording the longest period of anomalous radon activity. As for the recent 3.5–3.6 tremors of 1984, seismic activity of this magnitude had been anticipated for January or February on the basis of the amplitude of the November radon anomaly.These observations provide further evidence of (a) the existence of soil-radon anomalies precursory to the large earthquakes in this intraplate region, (b) the utility of such anomalies in anticipating events of small to moderate magnitudes for the region, and (c) the occurrence of regional-scale strain events prior to some of the larger mid-continental earthquakes.A very recent radon anomaly, the strongest yet to be detected in the seven years of monitoring in the mid-continental region, occurred in the New Madrid seismic zone from mid-February through mid-June 1984. A 4.0 earthquake occurred one month after a peak in the radon activity. The amplitude and duration of the anomaly suggest that a significant change in the state of stress or strain may have occurred in the mid-continental region during 1984.  相似文献   

19.
The results of a study of the macroseismic effects in the territory of Moscow of a remote deepfocus earthquake that occurred on May 24, 2013 in the Sea of Okhotsk are reported. On the surface of the earth and on the first floors of the buildings the seismic effect was not felt. The effect of the shock began to manifest itself at levels higher than the fifth floor of the buildings. The distribution of points on the map where the earthquake was felt is non-uniform. Points where tremor was felt do not appear to correspond with certain types of Quaternary deposits or with zones of different depth. There is also no significant correlation of the parts of the surface with high intensities of tremor and areas of ground-water flooding. Comparison between the surface manifestations of the seismic event and the tectonic features and deep structure of the metropolis was made. Based on the results of the implemented statistical estimation of distribution points where the earthquake was felt on the territory of the city it is visible that fault zones govern the largest number of points, while block structures characterize almost half of them. Thus, we can reasonably suggest a certain macroseismic increase of vibrations from earthquakes in the areas of large faults in the city. The study of deformations of the asphalt cover of walkways on the landslide-affected slope of Vorobyovy Hills showed that the tremor caused by the Okhotsk deep focus earthquake of May 24, 2013, caused the activation of a small landslide at all levels of the hillside.  相似文献   

20.
Philippine geothermal systems occur in the vicinity of large Holocene calc-alkaline volcanic complexes. Wells drilled in these areas encountered multiple intrusions; the latest dikes are the subsurface manifestations of the youngest heat source. Commonly, at least two hydrothermal regimes are juxtaposed in a single area, with the latest being in equilibrium with the present temperature and chemical regime.Alteration by neutral-pH water is pervasive and abundant. A contact-metamorphic aureole also occurs near intrusives. Alteration due to acid-sulfate fluids is generally confined to permeable structures. Neutral-pH alteration is divided into four zones on the basis of key clay minerals, and two subzones are defined by calc-silicates. These are the smectite (ambient to 180°C), transition (180–230°C), illite (230–320°C) and biotite (270–340°C) zones. Subzones are defined by epidote (250–340°C) and amphibole (280–340°C). The four main zones of acid alteration are: kaolinite (ambient to 120°C), dickite ± kaolinite (120–200°C), dickite ± pyrophyllite (200–250°C), and pyrophyllite ± illite (230–320°C). Where relict high-temperature alteration reaches the surface, the area being drilled is usually the outflow zone of the present system.These hydrothermal mineral assemblages are used: (1) as geothermometers; (2) to assist in determining the depth at which the production casing will be set during drilling; (3) to estimate fluid pH and other chemical parameters; (4) to predict possible corrosion and scaling tendencies of the fluids; (5) as a measure of permeability and possible cold water influx into wells; (6) as a guide to field hydrology; and (7) to estimate roughly the thickness of the eroded overburden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号