首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
W. Mattig 《Solar physics》1969,8(2):291-309
Spectra of spots very near to the solar limb (limb distance 8) are used to determine the height difference between the levels of formation of the continuum and the line cores of 60 medium-strong Fraunhofer lines. For all lines (with Rowland Intensity < 10), this difference is < 1 (= 725 km) and well correlated with the Rowland intensity. The line absorption coefficient is calculated for some lines with known oscillator strength. This gives a possibility to deduce a value for the scale height of the umbra, which is found to be about 100 km, thus being equal to the photospheric scale height. Pure hydrostatic equilibrium exists, therefore, in the umbra, and vertical magnetic forces are negligible. Other methods for determining the scale height are discussed for comparison.The horizontal pressure equilibrium is discussed by taking into account the Wilson effect, and by neglecting dynamic terms (flow of matter). The magnetic field is confirmed to be force-free in higher layers (chromosphere). The pressure difference umbra-photosphere increases towards deeper layers, having a maximum at * - 1 which corresponds to about two times the magnetic pressure H 2/8. If rotational symmetry of the field is assumed, this can be explained by a minimum radius of curvature of the field lines of 1/4 spot radius.Mitteilungen aus dem Fraunhofer Institut Nr. 90.  相似文献   

2.
The emission spectra and their time variations of gyro-synchrotron emission from an ensemble of energetic electrons are computed for some initial power-law distributions of the electron energies N()d= with =2 or 4. The spectra and decay curves of the emission are compared with solar microwave bursts in order to separately estimate the magnetic field H and . From a limited number of observations, we have 3 and H 103 gauss for the microwave impulsive bursts, and 2 and H (500–1000) gauss for the microwave type-IV bursts.  相似文献   

3.
During the cool phase of the super-supergiant HR 8752, which happened around 1973, when the star's spectral type was K2...K5 Ia+, the most probable vertical extent of the main turbulent elements in the star's photosphere was about 6 times the density scale height, which is about half the stellar radius. In early-type photospheres (class Ia) it is about 10 times the atmospheric density scale height (about 0.25 of the stellar radius), while in less extreme (luminosity class Ib) medium-type supergiants the most probable vertical extent of the elements is approx. 8 times the density scale height (0.05R). Large turbulent elements are apparently a common feature in supergiant photospheres; the more extreme the supergiant the larger the relative size of the eddies.  相似文献   

4.
Patrick C. Crane 《Solar physics》1998,177(1-2):243-253
Fourier analysis (DFT/CLEAN) of the international sunspot number (R) series since 1932 has revealed two long (250–500 days) and distinct episodes of solar activity exhibiting persistent 13 -day variations. The first episode lasts 500 days near the maximum of solar cycle 20, and the second, 250 days near the end of the current solar cycle 22. The solar radio flux density (F 10_7cm) series since 1947 has also been analyzed. During the first episode both solar indices exhibit distinct 27- and 13-day variations (the first report of 13-day variations in F 10_7cm). During the second episode neither index exhibits distinct 27-day variations and only R exhibits 13-day variations. Conditions affecting the appearance of 13-day variations in F 10_7cm are discussed.  相似文献   

5.
A central part of the GRB 790613 field is investigated, which contains about 1/3 of the area of 99% confidence of the GRB localization. Up to V 25 no blue optical counterparts were found. This can be interpreted as the absence in the field of single compact objects of the neutron star type as a possible potential source of -burst, up to a distance of 30 pc.  相似文献   

6.
We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the Piecewise Parabolic Method on an equidistant Cartesian grid. The code is purely Newtonian, but does include the emission of gravitational waves and their back-reaction. The properties of neutron star matter are described by the equation of state of Lattimer and Swesty (1991). Energy loss by all types of neutrinos and changes of the electron fraction due to the emission of electron neutrinos and antineutrinos are taken into account by an elaborate neutrino leakage scheme. We simulate the coalescence of two identical, cool neutron stars with a baryonic mass of 1.6M and a radius of 15 km and with an initial center-to-center distance of 42 km. The initial distributions of density and electron concentration are given from a model of a cold neutron star in hydrostatic equilibrium. We investigate three cases which differ by the initial velocity distribution in the neutron stars. The orbit decays due to gravitational-wave emission and after one revolution the stars are so close that dynamical instability sets in. Within 1 ms the neutron stars merge into a rapidly spinning (P 1 ms), high-density body ( 1014 g/cm3) with a surrounding thick disk of material with densities 1010 – 1012 g/cm3 and orbital velocities of 0.3-0.5 c. The peak emission of gravitational waves has a maximum luminosity of a few times 1055 erg/s and is reached for about 1 ms. The amplitudes of the gravitational waves are close to 3 10–23 at a distance of 1 Gpc and the typical frequency is near the dynamical value of the orbital motion of the merging neutron stars of 2 KHz. In a post-processing step, the rate of neutrino-antineutrino annihilation is calculated from the neutrino luminosities generated during the hydrodynamical simulations. We find the integral annihilation rate to be a few 1050 erg/s during the phase of strongest neutrino emission, which is too small to generate the observed bursts considering the fact that the merged object of about 3M will most likely collapse to a black hole within milliseconds.  相似文献   

7.
On May 21/22, 1980 the Hard X-Ray Imaging Spectrometer aboard the SMM imaged an extensive coronal structure after the occurrence of a two-ribbon flare on May 21, 20:50 UT. The structure was observed from 22:20 UT on May 21 until its disappearence at 09:00 UT on May 22.At 22:20 UT the brightest pixel in the arch was located at a projected altitude of 95 000 km above the zero line of the longitudinal magnetic field. At 23:02 UT the maximum of brightness shifted to a neighbouring pixel with approximately the same projected altitude. This sudden shift indicates that the X-ray structure consisted of (at least) two separate arches at approximately the same altitude, one of which succeeded the other as the brightest arch in the structure at 23:02 UT.From 23:02 UT onwards the maximum of brightness did not change its position in the HXIS coarse field of view. With a spatial resolution of 32 this places an upper limit of 1.1 km s-1 on the rise velocity of the arch. Thus, contrary to a similar arch observed on November 6/7, where rise velocities of the order of 10 km s-1 were measured in the same phase of development, the May 22 arch was a stationary structure at an altitude of 145000 km.The following values were estimated for the physically relevant quantities of the May 21/22 arch at the time of its maximum brightness (23:00 UT): temperature T 6.3 × 106 K, electron density n e 1.1 × 109 cm-3, total emitting volume V 5 × 1029 cm3, energy density 2.9 erg cm–3, total energy contents E 1.4 × 1030 erg, total mass M 9 × 1014 g.The top of the arch was observed at 145 000 km altitude within 1.5 hr after the flare occurrence. Since it seems unlikely that the structure already existed prior to the flare at 20:50 UT, the arch must have risen to its stationary position with an average velocity exceeding 17 km s–1 (possibly much faster). We speculate that the arch was formed very fast at the flare onset, when (part of) the active region loop system was elevated within minutes to the observed altitude.  相似文献   

8.
A spectral analysis of the fluctuations of the infrared sky radiance at 10m was made at the ESO-site of La Silla in Northern Chile. The data are compared to literature. The consequences of the results on infrared observing for future large telescopes are discussed: our data suggest that in order to achieve background noise limited performance in the 10m atmospheric window chopping with frequencies of 8 Hz and amplitudes of 10 arcsec is mandatory.based on observations obtained at the European Southern Observatory, La Silla, Chile  相似文献   

9.
Charged particle acceleration is considered by a radiation flux from a star or hot spot in X-ray pulsars. It is shown that for any distance from the star there exists the upper velocity limit up to which a particle can be accelerated by radiation. This critical velocity does not depend on the luminosity of the spot. Near the hot spot surface the critical velocityv0.65c. These results are applied to plasma acceleration inX-ray pulsars. The mechanism is advanced, of -ray generation in the course of plasma accretion, onto a neutron star. It is shown that in the presence of a large magnetic field and high luminosity of the spot the relativistic electron-position avalanche may appear. The optical depth of the electron-positron cloud achieves the value of order one. The X-ray quanta emitted by the spot are scattered by relativistic (2.6) electron-positron pairs and are transformed into -radiation. Hard quanta with energy 1 MeV leave the generation region in the narrow cone 0.25.  相似文献   

10.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,195(2):319-332
It is shown on the basis of analyzing the LASCO/SOHO data that the main quasi-stationary solar wind (SW), with a typical lifetime of up to 10 days, flows in the rays of the streamer belt. Depending on R, its velocity increases gradually from V3 km s–1 at R1.3 R to V170 km s–1 at R15 R . We have detected and investigated the movement of the leading edge of the main solar wind at the stage when it occupied the ray, i.e., at the formative stage of a quasi-stationary plasma flow in the ray. It is shown that the width of the leading edge of the main SW increases almost linearly with its distance from the Sun. It is further shown that the initial velocity of the inhomogeneities (`blobs') that travel in the streamer belt rays increases with the distance from the Sun at which they originate, and is approximately equal to the velocity of the main solar wind which carries them away. The characteristic width of the leading edge of the `blob' R , and remains almost unchanging as it moves away from the Sun. Estimates indicate that the main SW in the brightest rays of the streamer belt to within distances at least of order R3 R represents a flow of collisional magnetized plasma along a radial magnetic field.  相似文献   

11.
BVR data for the middle-aged radio pulsar PSR 0656+14 obtained on January 20-21, 1996 at the 6-m telescope of the Special Astrophysical Observatory are presented. The brightness of a star-like object coincident with the position of the VLA radio source in the Cousins B filter is B 25.1, with eff = 4448Å, adjacent to the HST F130LP long-pass filter. The relatively large V and R fluxes (3 or > 10-30 ergs cm-2 s-2 Hz-1) provide evidence that the optical emission of this pulsar is non-thermal up to 6600 Å. Most probably, in the UV-optical (BVR) spectral range, a power-law spectrum is super-imposed on the thermal-like emission of the neutron star surface, which could be related to the mechanism of the pulsar activity itself.  相似文献   

12.
We determine the radial component of the supergranular flow velocity by examining the center-to-limb variation of the Doppler velocity signal. We acquire individual Doppler images obtained with the MDI instrument on the SOHO spacecraft and process them to remove the p-mode oscillation signal, the axisymmetric flows, the convective blueshift signal, and instrumental artifacts. The remaining Doppler signal contains only non-axisymmetric flow structures. The Doppler signal from the horizontal flows in these structures varies like sin, where is the heliocentric angle from disk center. The Doppler signal from radial flows varies like cos. We fit the center-to-limb variation of the mean squared velocity signal to a straight line in sin2 over the central portion of the disk. The intercept of this line at disk center gives the amplitude of the radial component of the flow. The slope of the line gives the amplitude of the horizontal component. We find that the radial flows for typical supergranules have speeds about 10% that of their associated horizontal flows or about 30 m s–1. The ratio of the radial to horizontal flow speed increases from 9% to about 18% as the size of the structure decreases from >60 Mm to 5 Mm. We use data simulations to check these results and find a ratio that increases from 5% to only about 12% over the same range of sizes. These smaller ratios are attributed to an underestimation of the horizontal flow speeds due to the fact that the transverse component of the horizontal flow is not detected by Doppler measurements.  相似文献   

13.
If wrong, all the early reports of a small horizontal scale ( 2000 km) for the 5-min oscillations may be due to unfortunate similarities between the velocity and overturning time of the solar granule convection and the corresponding velocity and period typical of the oscillations. A large horizontal scale ( 30000 km) for the oscillations seems consistent with the old data and almost required by more recent measurements. The large scales recently measured would imply that a sizeable fraction of the solar volume is involved in the oscillation and would cast some doubt on all the old theories of the 5-min oscillations which were based on plane parallel atmospheres.  相似文献   

14.
The ratio of the escape velocity at the centre to the mean velocity amounts to 2.5 for open star clusters, 2.7 for globular clusters, and 2.8 for the Coma cluster of galaxies.

Mitteilungen Serie A.  相似文献   

15.
A model is constructed of a spherically symmetric self-gravitating condensation of neutral hydrogen immersed in anHii region. The structure of the condensation is represented by the isothermal gas sphere at a temperature of 100°K. Typical parameters of such a condensation compatible with the estimated ultra-violet radiation field in the central regions of the Orion Nebula are, mass 1M ; radius 1016 cm; mean density 10–15 gm cm–3. The condensations are not static configurations but evolve because of mass loss by ionization from their surfaces. Perhaps 5% become gravitationally unstable and collapse. The remainder act as sources of ionized gas which flows into the surrounding nebula.  相似文献   

16.
Cometary plasma tails are accelerated by the solar wind to half its velocity, corresponding to some 102 times the solar-wind momentum density. We corroborate Alfvén's (1957) wind-sock mechanism according to which the momentum transfer is brought about by magnetic rigidity.  相似文献   

17.
The variation of radio luminosity with redshift and its effect on the analysis of the angular size-redshift (z) relation for a bright radio source sample (s 178 10Jy) has been investigated. By assuming a power law dependence of luminosity on redshift of the formP (1 +z), it was found that 4.4 (with correlation coefficientr 0.99) for at leastz 0.3. Correction for such a strongP – (1 +z) correlation when considering thez data for the sample led to a steeperz slope. This could be explained by assuming linear size evolution of the formD (1 +z)n withn = 2.8 – 3.3 consistent with both theoretical results and those obtained for more homogeneous source samples.  相似文献   

18.
Bright chromospheric mottles observed at the H line centre are found to have sizes ranging from 1450 to 4400 km and lifetimes of about 11 min. They occur in close juxtaposition to dark mottles which, at intermediate heliocentric angles ( 60°), are found to be displaced towards the limb relative to the associated bright mottles. The magnitude of the displacement indicates a height difference of 4300 km. In conjunction with height measurements of bright mottles beyond the limb (Loughhead, 1969), this implies that bright and dark mottles are phenomena of the lower ( 3300 km) and upper ( 5000–7600 km) chromosphere respectively.  相似文献   

19.
We report the results of the first observations of solar coronal bright points at 6 cm wavelength using the Very Large Array (VLA), with a spatial resolution of 1.2. The maximum brightness temperature of the sources observed is 3 × 104 K with a mean value of 1 × 104 K (above the quiet Sun value). The lifetime of most sources is between 5 and 20 min. The average diameter of the sources is about 5–15 arc. The sources are gaussian-like near the footpoint of miniature loops and they appear in groups. The observations indicate that significant fluctuations in the brightness temperature (sometimes quasi-periodic) and in the spatial extents of these sources can occur over periods of a few minutes.On leave from Beijing Observatory, Beijing, Peoples Republic of China.  相似文献   

20.
The electrical conductivity of the lunar interior has been determined from magnetic field step transients measured on the lunar dark side. The simplest model which best fits the data is a spherically symmetric three layer model having a nonconducting outer crust of radial thickness 0.03R moon; an intermediate layer of thicknessR0.37R moon, with electrical conductivity 1 3.5 × 10–4 mhos/m; and an inner core of radiusR 2 0.6R m with conductivity 2 10–2 mhos/m. Temperatures calculated from these conductivities in the three regions for an example of an olivine Moon are as follows: crust, < 440 K; intermediate layer, 890 K; and core, 1240 K. The whole-moon relative permeability has been calculated from the measurements to be/ 0 = 1.03 ± 0.13. Remanent magnetic fields at the landing sites are 38 ± 3 at Apollo 12, 43 ± 6 and 103 ± 5 at two Apollo 14 sites separated by 1.1 km, and 6 ± 4 at the Apollo 15 site. Measurements show that the 38 remanent field at the Apollo 12 site is compressed to 54 by a solar wind pressure increase of 7 × 10–8 dynes/cm2.National Research Council Postdoctoral Associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号