首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the crystallization behavior and the salt weathering potential of Na2SO4, MgSO4 and an equimolar mixture of these salts in natural rock and porous stone. Geochemical modeling of the phase diagram of the ternary Na2SO4–MgSO4–H2O system was used to determine the equilibrium pathways during wetting (or deliquescence) of incongruently soluble minerals and evaporation of mixed electrolyte solutions. Model calculations include stable and metastable solubilities of the various hydrated states of the single salts and the double salts Na2Mg(SO4)2·4H2O (bloedite), Na2Mg(SO4)2·5H2O (konyaite), Na12Mg7(SO4)13·15H2O (loeweite) and Na6Mg(SO4)4 (vanthoffite). In situ Raman spectroscopy was used to study the phase transformations during wetting of pure MgSO4·H2O (kieserite) and of the incongruently soluble salts bloedite and konyaite. Dissolution of kieserite leads to high supersaturation resulting in crystallization of higher hydrated phases, i.e. MgSO4·7H2O (epsomite) and MgSO4·6H2O (hexahydrite). This confirms the high damage potential of magnesium sulfate in salt damage of building materials. The dissolution of the incongruently soluble double salts leads to supersaturation with respect to Na2SO4·10H2O (mirabilite). However, the supersaturation was insufficient for mirabilite nucleation. The damage potential of the two single salts and an equimolar salt mixture was tested in wetting–drying experiments with porous sandstone. While the high damage potential of the single salts is confirmed, it appears that the supersaturation achieved during wetting of the double salts at room temperature is not sufficient to generate high crystallization pressures. In contrast, very high damage potentials of the double salts were found in experiments at low temperature under high salt load.1  相似文献   

2.
We report on the crystallization behavior and the salt weathering potential in natural rock and porous stone of single salts (NaNO3, Na2SO4) and salt mixtures in the ternary NaNO3–Na2SO4–H2O system. Geochemical modeling of the phase diagram of the ternary NaNO3–Na2SO4–H2O system was used to determine the equilibrium pathways during wetting (or deliquescence) of incongruently soluble minerals and evaporation of mixed electrolyte solutions. Experiments were carried out in order to study the phase changes during dissolution either induced by deliquescence or by the addition of liquid water. In situ Raman spectroscopy was used to study the phase transformations during wetting of pure Na2SO4 (thenardite) and of Na3NO3SO4·H2O (darapskite). In both experiments crystallization of Na2SO4·10H2O (mirabilite) from highly supersaturated solutions is demonstrated confirming the high salt weathering potential of thenardite and darapskite wetting. In order to study the damage potential of darapskite experimentally, wetting–drying experiments with porous sandstone with the two single salts (Na2SO4, NaNO3) and two NaNO3–Na2SO4 salt mixtures were carried out. Different destructive and non-destructive techniques were tested for damage monitoring. NaNO3 was found to be the least damaging salt and Na2SO4 is the most damaging one. The classification of the two salt mixtures was less obvious.  相似文献   

3.
At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na+-K+-Ca2+-Cl-SO42−/H2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described.In the system NaCl-CaSO4-H2O the missing anhydrite (CaSO4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na2SO4-CaSO4-H2O the observed glauberite (Na2SO4 · CaSO4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K2SO4 · CaSO4 · H2O) and goergeyite (K2SO4 · 5 CaSO4 · H2O) were determined, and a new phase was found at 200°C in the K2SO4-CaSO4-H2O system. Chemical and single crystal structure analysis give the formula K2SO4 · CaSO4. The structure is isostructural with palmierite (K2SO4 · PbSO4). The glaserite (“3 K2SO4 · Na2SO4”) appears as solid solution in the system Na2SO4-K2SO4-H2O. Its solubility and stoichiometry was determined as a function of solution composition.  相似文献   

4.
Several double salts have been detected in building materials and most of these salts are incongruently soluble compounds. In contrast to single salts, however, no systematic investigations of the crystallization behavior and deleterious effects of incongruently soluble double salts exist. To assess the damage potential of these salts, a systematic investigation of their highly complex behavior is desirable. This paper deals with the crystallization behavior of various solids in the ternary mixed NaNO3–Na2SO4 system including the formation of the double salt darapskite, Na3NO3SO4·H2O. The crystallization sequence during droplet evaporation experiments at room conditions was determined using Raman and polarization microscopy. The basic idea of this research is to use deviations of the crystallization sequence of a salt or a mixed salt solution from the equilibrium pathway as an indicator to detect the degree of supersaturation. The observed crystallization pathway includes the formation of the metastable phases Na2SO4(III), Na2SO4(V) and darapskite. The experimental observations are discussed on the basis of the NaNO3–Na2SO4–H2O phase diagram and the results provide evidence for crystal growth from highly supersaturated solutions in both systems. If the crystals growing under these conditions are confined, these supersaturations result in substantial crystallization pressures.  相似文献   

5.
We report new measurements of equilibrium relative humidities for stable and metastable hydration-dehydration equilibria involving several magnesium sulfates in the MgSO4·nH2O series. We also report a comprehensive thermodynamic treatment of the system including solution properties and experimental data from the published literature, i.e. solubilities, heat capacities and additional decomposition humidities. While for some magnesium sulfate hydrates solubility data in the binary system MgSO4-H2O are sparse, there is a reasonable database of solubility measurements of these hydrates in the ternary MgCl2-MgSO4-H2O and the quaternary reciprocal Na+-Mg2+-Cl-SO42-H2O systems. To make these data suitable for the determination of solubility products, we parameterized a Pitzer ion interaction model for the calculation of activity coefficients and water activities in mixed solutions of these systems and report the ion interaction parameters for the Na+-Mg2+-Cl-SO42-H2O system. The model predicted solubilities in the reciprocal system are in very good agreement with experimental data. Using all available experimental data and the solution model an updated phase diagram of the MgSO4-H2O system covering the whole temperature range from about 170 to 473 K is established. This treatment includes MgSO4·H2O (kieserite), MgSO4·4H2O (starkeyite), MgSO4·5H2O (pentahydrite), MgSO4·6H2O (hexahydrite), MgSO4·7H2O (epsomite) and MgSO4·11H2O (meridianiite). It is shown that only kieserite, hexahydrite, epsomite and meridianiite show fields of stable existence while starkeyite and pentahydrite are always metastable. Due to sluggish kinetics of kieserite formation, however, there is a rather extended field of metastable existence of starkeyite which makes this solid a major product in dehydration reactions. The model predicted behavior of the magnesium sulfates is in excellent agreement with observations reported in the literature under terrestrial temperature and relative humidity conditions. We also discuss the implications of the new phase diagram for sulfates on Mars.  相似文献   

6.
Crystallisation of sodium sulfate: supersaturation and metastable phases   总被引:1,自引:0,他引:1  
Crystallisation of sodium sulfate solutions by evaporation under controlled climatic conditions has revealed the existence of crystalline hydrated sodium sulfate salts not previously reported. The sodium sulfate phase crystallising and the concentration of the solution at the point of crystallisation depends on the climatic conditions (temperature and evaporation rate). During the rehydration of the anhydrous sodium sulfate phase, thenardite, another previously unreported phase was formed prior to the nucleation of the stable phase, mirabilite Na2SO4 · 10H2O. The addition of organic inhibitors changes both the crystallisation and the rehydration behavior in this system.  相似文献   

7.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

8.
According to the compositions of the underground brine resources in the west of Sichuan Basin, solubilities of the ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were investigated by isothermal method at 348 K. The equilibrium solid phases, solubilities of salts, and densities of the solutions were determined. On the basis of the experimental data, the phase diagrams and the density-composition diagrams were plotted. In the two ternary systems, the phase diagrams consist of two univariant curves, one invariant point and two crystallization fields. Neither solid solution nor double salts were found. The equilibrium solid phases in the ternary system NaBr–Na2SO4–H2O are NaBr and Na2SO4, and those in the ternary system KBr–K2SO4–H2O are KBr and K2SO4. Using the solubilities data of the two ternary subsystems at 348 K, mixing ion-interaction parameters of Pitzer’s equation θxxx, Ψxxx and Ψxxx were fitted by multiple linear regression method. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities of phase equilibria in the two ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were calculated with corresponding parameters. The calculation diagrams were plotted. The results showed that the calculated values have a good agreement with experimental data.  相似文献   

9.
Armenite, ideal formula BaCa2Al6Si9O30·2H2O, and its dehydrated analog BaCa2Al6Si9O30 and epididymite, ideal formula Na2Be2Si6O15·H2O, and its dehydrated analog Na2Be2Si6O15 were studied by low-temperature relaxation calorimetry between 5 and 300 K to determine the heat capacity, Cp, behavior of their confined H2O. Differential thermal analysis and thermogravimetry measurements, FTIR spectroscopy, electron microprobe analysis and powder Rietveld refinements were undertaken to characterize the phases and the local environment around the H2O molecule.The determined structural formula for armenite is Ba0.88(0.01)Ca1.99(0.02)Na0.04(0.01)Al5.89(0.03)Si9.12(0.02)O30·2H2O and for epididymite Na1.88(0.03)K0.05(0.004)Na0.01(0.004)Be2.02(0.008)Si6.00(0.01)O15·H2O. The infrared (IR) spectra give information on the nature of the H2O molecules in the natural phases via their H2O stretching and bending vibrations, which in the case of epididymite only could be assigned. The powder X-ray diffraction data show that armenite and its dehydrated analog have similar structures, whereas in the case of epididymite there are structural differences between the natural and dehydrated phases. This is also reflected in the lattice IR mode behavior, as observed for the natural phases and the H2O-free phases. The standard entropy at 298 K for armenite is S° = 795.7 ± 6.2 J/mol K and its dehydrated analog is S° = 737.0 ± 6.2 J/mol K. For epididymite S° = 425.7 ± 4.1 J/mol K was obtained and its dehydrated analog has S° = 372.5 ± 5.0 J/mol K. The heat capacity and entropy of dehydration at 298 K are Δ = 3.4 J/mol K and ΔSrxn = 319.1 J/mol K and Δ = −14.3 J/mol K and ΔSrxn = 135.7 J/mol K for armenite and epididymite, respectively. The H2O molecules in both phases appear to be ordered. They are held in place via an ion-dipole interaction between the H2O molecule and a Ca cation in the case of armenite and a Na cation in epididymite and through hydrogen-bonding between the H2O molecule and oxygen atoms of the respective silicate frameworks. Of the three different H2O phases ice, liquid water and steam, the Cp behavior of confined H2O in both armenite and epididymite is most similar to that of ice, but there are differences between the two silicates and from the Cp behavior of ice. Hydrogen-bonding behavior and its relation to the entropy of confined H2O at 298 K is analyzed for various microporous silicates.The entropy of confined H2O at 298 K in various silicates increases approximately linearly with increasing average wavenumber of the OH-stretching vibrations. The interpretation is that decreased hydrogen-bonding strength between a H2O molecule and the silicate framework, as well as weak ion-dipole interactions, results in increased entropy of H2O. This results in increased amplitudes of external H2O vibrations, especially translations of the molecule, and they contribute strongly to the entropy of confined H2O at T < 298 K.  相似文献   

10.
《Chemical Geology》2006,225(3-4):256-265
SeO42− ions can substitute for sulphate in the gypsum structure. In this work crystals of different Ca(SO4,SeO4)·2H2O solid solutions were precipitated by mixing a CaCl2 solution with solutions containing different ratios of Na2SO4 and Na2SeO4. The compositions of the precipitates were analysed by EDS and the cell parameters were determined by X-ray powder diffraction. Moreover, a comparative study on dehydration behaviour of selenate rich and sulfate rich Ca(SO4,SeO4)·2H2O solid solutions was carried out by thermogravimetry.The experimental results show that the Ca(SO4,SeO4)·2H2O solid solution presents a symmetric miscibility gap for compositions ranging from XCaSO4·2H2O = 0.23 to XCaSO4·2H2O = 0.77. By considering a regular solution model a Guggenheim parameter a0 = 2.238 was calculated. The solid phase activity coefficients obtained with this parameter were used to calculate a Lippmann diagram for the system Ca(SO4,SeO4)·2H2O–H2O.  相似文献   

11.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

12.
While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 · 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) · 5H2O, and basaluminite, Al4(SO4)(OH)10 · 5H2O. An examination of literature values shows that the log Ksp = ?85.4 for alunite and log Ksp = ?117.7 for basaluminite. In this report the log Ksp = ?7.0 is estimated for alunogen and log Ksp = ?17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3–5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4–7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals.Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption.  相似文献   

13.
The sodium solubility in silicate melts in the CaO-MgO-SiO2 (CMS) system at 1400 °C has been measured by using a closed thermochemical reactor designed to control alkali metal activity. In this reactor, Na(g) evaporation from a Na2O-xSiO2 melt imposes an alkali metal vapor pressure in equilibrium with the molten silicate samples. Because of equilibrium conditions in the reactor, the activity of sodium-metal oxide in the molten samples is the same as that of the source, i.e., aNa2O(sample) = aNa2O(source). This design also allows to determine the sodium oxide activity coefficient in the samples. Thirty-three different CMS compositions were studied. The results show that the amount of sodium entering from the gas phase (i.e., Na2O solubility) is strongly sensitive to silica content of the melt and, to a lesser extent, the relative amounts of CaO and MgO. Despite the large range of tested melt compositions (0 < CaO and MgO < 40; 40 < SiO2 < 100; in wt%), we found that Na2O solubility is conveniently modeled as a linear function of the optical basicity (Λ) calculated on a Na-free basis melt composition. In our experiments, γNa2O(sample) ranges from 7 × 10−7 to 5 × 10−6, indicating a strongly non-ideal behavior of Na2O solubility in the studied CMS melts (γNa2O(sample) ? 1). In addition to showing the effect of sodium on phase relationships in the CMS system, this Na2O solubility study brings valuable new constraints on how melt structure controls the solubility of Na in the CMS silicate melts. Our results suggest that Na2O addition causes depolymerization of the melt by preferential breaking of Si-O-Si bonds of the most polymerized tetrahedral sites, mainly Q4.  相似文献   

14.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

15.
The solubility of KFe(CrO4)2·2H2O, a precipitate recently identified in a Cr(VI)-contaminated soil, was studied in dissolution and precipitation experiments. Ten dissolution experiments were conducted at 4–75°C and initial pH values between 0.8 and 1.2 using synthetic KFe(CrO4)2·2H2O. Four precipitation experiments were conducted at 25°C with final pH values between 0.16 and 1.39. The log KSP for the reaction
相似文献   

16.
The necropolis of Carmona (Seville, Spain) is one of the most significant Roman burial sites in southern Spain used during the first and second centuries ad. Of its more than 600 tombs, the Postumius Tomb is one of the best examples of a tomb affected by severe salt damage. To define safe microclimatic conditions for its conservation, environmental parameters were recorded from June 2007 to April 2009, both inside and outside the tomb, and mineralogical, textural, petrophysical, and durability characterization studies of the host-rock were made. Experimental tests revealed a high susceptibility to salt deterioration of a host-rock (calcarenite) with low mechanical properties and a complex porous medium that favors salt weathering, water condensation, and capillary rise. The analysis of the weathered material showed the presence chiefly of gypsum (CaSO4·2H2O), thenardite (Na2SO4) and halite (NaCl) in the tomb of Postumius, with alteration that was more intensive in spring and autumn, and less so during summer months. Salt damage activity was calculated by quantifying the number of transitions of crystallization–dissolution of saline phases. The calculated seasonality for water condensation and salt damage is coeval. The host-rock alteration is in accord with the estimated salt decay, and was more intensive in spring and autumn and less so during summer. The seasonality of halite transitions is similar to that of the sodium sulfate system, which suggests that salt weathering is produced by the two types of salts. By combining different methodological approaches (pore structure, water condensation, salt and environmental conditions), it is possible to explain why salt crystallization occurs in a tomb with hygrometric conditions that are not suitable for this process to occur. These methodological approaches are also used to other rock-decaying processes, such as the development of microorganisms, clay swelling and calcite dissolution by NaCl- and CO2-rich pore waters, and can be used to predict safe threshold microclimatic conditions that minimize all rock-decaying processes.  相似文献   

17.
Sulfur-35 was used to monitor the non-steady-state tracer diffusion of the free sulfate ion and sulfate ion-pairs in aqueous solutions of MgSO4 and Na2SO4. Diffusion coefficients were derived from radiotracer flux measurements taken over ionic strengths ranging from 0.001 to 0.7. The experimental tracer diffusion coefficient is a function of the diffusion coefficients of the free sulfate ion and the sulfate ion-pairs as well as the ion pair equilibrium constant. The free sulfate ion tracer diffusion coefficient was determined independently from both the MgSO4 and Na2SO4, experiments and found to be 1.11 and 1.08 (in units of 10-5cm2sec-1, ± 10%, respectively. These values closely agree with that calculated from the Nernst expression, 1.07 sx 10-5cm2sec-1. The tracer diffusion coefficients of MgSO40 and NaSO4- were determined to be 0.85 and 1.23 sx 10-5cm2sec-1, respectively. These numbers are in reasonable agreement with the earlier work on mutual diffusion coefficients by Rard and Miller (1979b) (DMgSO4o = 0.65, Dnaso4- = 1.19) and Harned and Hudson (1951)DMgSO40 = (0.70). A modified version of the theoretical equation developed by Pikal (1971) is proposed for predicting the tracer diffusion coefficients of many ion-pairs relevant to seawater. Many of these predicted values are found to be within 10–20% of the empirical values extracted from mutual diffusion data. The experimental and theoretical diffusion coefficient data are used to calculate revised coupled diffusion coefficients, Dg, according to the model of Lasaga (1979).  相似文献   

18.
Summary Recently several natural and artificial ferric iron sulphate crystal structures have been solved. Sideronatrite, Na2Fe3+(SO4)2(OH)·3H2O, does not provide good crystals for structural purposes. However if we examine crystallographic, chemical and physical data some useful information about the ...Fe–O–S... structural topology can be inferred. In fact this analysis strengthens the hypothesis that there is a {Fe 2 3+ (SO4)4(OH)2} chain in sideronatrite like that found in guildite, Cu2+Fe3+(SO4)2(OH)·4H2O.
Sideronatrit: Ein Mineral mit einer {Fe2(SO4)4(OH)2}-Kette vom Typ Guildit?
Zusammenfassung Kürzlich wurden die Kristallstrukturen mehrerer natürlicher und künstlicher Ferrisulfate gelöst. Sideronatrit, Na2Fe3+(SO4)2(OH)·3H2O, liefert keine für die Strukturuntersuchung gut geeigneten Kristalle. Dennoch erhält man aus der Untersuchung der kristallographischen, chemischen und physikalischen Daten nützliche Information über die ...Fe–O–S...-Topologie der Struktur. Eine solche Analyse spricht für die Hypothese, daß der Sideronatrit eine {Fe 2 3+ (SO4)4(OH2)}-Kette enthält, wie sie im Guildit, Cu2+Fe3+(SO4)2(OH)·4H2O, gefunden wurde.


With 1 Figure

Paper presented at the Sixth European Crystallographic Meeting. Barcelona, Spain 1980.  相似文献   

19.
The nucleation and growth of CaCO3 phases from aqueous solutions with SO42−:CO32− ratios from 0 to 1.62 and a pH of ∼10.9 were studied experimentally in batch reactors at 25 °C. The mineralogy, morphology and composition of the precipitates were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and microanalyses. The solids recovered after short reaction times (5 min to 1 h) consisted of a mixture of calcite and vaterite, with a S content that linearly correlates with the SO42−:CO32− ratio in the aqueous solution. The solvent-mediated transformation of vaterite to calcite subsequently occurred. After 24 h of equilibration, calcite was the only phase present in the precipitate for aqueous solutions with SO42−:CO32− ? 1. For SO42−:CO32− > 1, vaterite persisted as a major phase for a longer time (>250 h for SO42−:CO32− = 1.62). To study the role of sulfate in stabilizing vaterite, we performed a molecular simulation of the substitution of sulfate for carbonate groups into the crystal structure of vaterite, aragonite and calcite. The results obtained show that the incorporation of small amounts (<3 mole%) of sulfate is energetically favorable in the vaterite structure, unfavorable in calcite and very unfavorable in aragonite. The computer modeling provided thermodynamic information, which, combined with kinetic arguments, allowed us to put forward a plausible explanation for the observed crystallization behavior.  相似文献   

20.
Melt inclusions were studied in chrome diopside from the Inagli deposit of gemstones in the Inagli massif of alkaline ultrabasic rocks of potassic affinity in the northwestern Aldan shield, Yakutia, Russia. The chrome diopside is highly transparent and has an intense green color. Its Cr2O3 content varies from 0.13 to 0.75 wt %. Primary and primary-secondary polyphase inclusions in chrome diopside are dominated by crystal phases (80–90 vol %) and contain aqueous solution and a gas phase. Using electron microprobe analysis and Raman spectroscopy, the following crystalline phases were identified. Silicate minerals are represented by potassium feldspar, pectolite [NaCa2Si3O8(OH)], and phlogopite. The most abundant minerals in the majority of inclusions are sulfates: glaserite (aphthitalite) [K3Na(SO4)2], glauberite [Na2Ca(SO4)2], aluminum sulfate, anhydrite (CaSO4), gypsum (CaSO4 × 2H2O), barite (BaSO4), bloedite [Na2Mg(SO4)2 × 4H2O], thenardite (NaSO4), polyhalite [K2Ca2Mg(SO4)4 × 2H2O], arcanite (K2SO4), and celestite (SrSO4). In addition, apatite was detected in some inclusions. Chlorides are probably present among small crystalline phases, because some analyses of aggregates of silicate and sulfate minerals showed up to 0.19–10.3 wt % Cl. Hydrogen was identified in the gas phase of polyphase inclusions by Raman spectroscopy. The composition of melt from which the chrome diopside crystallized was calculated on the basis of the investigation of silicate melt inclusions. This melt contains 53.5 wt % SiO2, considerable amounts of CaO (16.3 wt %), K2O (7.9 wt %), Na2O (3.5 wt %), and SO3 (1.4 wt %) and moderate amounts of Al2O3 (7.5 wt %), MgO (5.8 wt %), FeO (1.1 wt %), and H2O (0.75 wt %). The content of Cr2O3 in the melt was 0.13 wt %. Many inclusions were homogenized at 770–850°C, when all of the crystals and the gas phase were dissolved. The material of inclusions heated up to the homogenization temperature became heterogeneous even during very fast quenching (two seconds) producing numerous small crystals. This fact implies that most of the inclusions contained a salt (rather than silicate) melt of sulfate-dominated composition. Such inclusions were formed from salt globules (with a density of about 2.5 g/cm3) occurring as an emulsion in the denser (2.6 g/cm3) silicate melt from which the chrome diopside crystallized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号