首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The more rapid dissolution of Ca-rich feldspars relative to Na, K-rich feldspars has been attributed to the preferential leaching of Al deep within the feldspar structure. Evidence from surface microanalysis (e.g., Hellmann et al., 2003), however, shows that preferential dissolution of Al is confined to the top layers of the feldspar lattice and that the amorphous surface layer most likely results from precipitation versus dissolution. It is thus critical to examine the extent of preferential Al removal. Here we present a theoretical study of plagioclase dissolution behavior using parameterized Monte Carlo simulations. Two different dissolution mechanisms, a mechanism involving preferential leaching of Al and an interfacial dissolution-reprecipitation mechanism, are tested using compositions representing the entire plagioclase solid solution series. Our modeling results indicate that under the control of the preferential Al leaching mechanism, the influence of (Al, Si) disorder on the dissolution rate is significant. At a fixed composition, an increase in the degree of (Al, Si) disorder yields an increased dissolution rate, with an 8-fold increase in dissolution rate observed for highly disordered albite (An0) compared to low albite. Increasing anorthite content tends to decrease the variation in the dissolution rate due to disorder. The difference in the dissolution rate of 293 tested oligoclase configurations with a composition of An20 is 3-fold, and the difference is reduced to 2-fold among 107 andesine configurations of An30. Furthermore, feldspar configurations with completely disordered (Al, Si) distributions yield a consistent log-linear dependence of dissolution rate on the anorthite content (An), while other feldspar configurations with modest degrees of (Al, Si) disorder exhibit rates less than this trend. In contrast, when Al removal is confined to the top surface layers, a variety of feldspar configurations with different (Al, Si) disorder but a single fixed composition have similar dissolution rates; and the dissolution rate of Ca-rich feldspars departs positively from its log-linear relationship with anorthite content. This departure occurs around An80 and is in good agreement with previous experimental studies. Subsequent modeling results of aluminum inhibition, ΔG dependence, and formation of altered surface layers in the framework of the interfacial dissolution-reprecipitation mechanism are all comparable with experimental investigations, and these results suggest that an interfacial dissolution-reprecipitation mechanism governs the dissolution of plagioclase feldspars.  相似文献   

2.
The ratios Na/Li, K/Li, Na/Cs and K/Cs have been calculated for exchange equilibria among the Li and Cs silicates spodumene, petalite, eucryptite, and pollucite, and the alkali feldspars albite and K-feldspar plus quartz, in pure water and in chloride solutions at temperatures from 100° to 700°C and pressures from 0.5 to 4 kbar, using available thermodynamic data for minerals and the modified HKF equation of state for aqueous species. For exchange equilibria between Li-bearing aluminosilicates and the alkali feldspars, the activities of the alkali metals in solution under most of the conditions investigated follow the order Li>Na>K, and Na/Li and K/Li decrease with decreasing temperature. For exchange equilibria between pollucite and the alkali feldspars the order is Na>K>Cs in solution; Na/Cs and K/Cs increase strongly with decreasing temperature. The absolute values of these alkali metal ratios are in good agreement with the few available experimental data. The effect of chloride ion pairing on the calculated ratios is slight and does not consistently improve agreement between theory and experiment. These results suggest that the alteration of eucryptite, petalite or spodumene to albite and/or K-feldspar should be a normal consequence of the closed system evolution of rare element pegmatites upon cooling, in agreement with the ubiquity of such phenomena world-wide. On the other hand, alteration of pollucite to albite or K-feldspar upon cooling is only likely to occur if external fluids, with very high Na/Cs and/or K/Cs ratios, gain access to the pegmatite. Owing to the heterogeneity of rare element pegmatites, the fluid need not be external to the entire pegmatite, but could be simply external to the particular zone containing pollucite. Fluids in equilibrium with typical subsolidus rare metal pegmatite assemblages will invariably have high Li contents, thus explaining the common occurrence of Li-metasomatic halos about pegmatites. These same fluids are predicted to have relatively low Cs contents, in apparent agreement with the lesser role of Cs relative to Li in metasomatic halos. However, preferential formation of complexes of the alkali metals with fluoride, borate or aluminosilicate components potentially could alter the calculated alkali metal behaviors.  相似文献   

3.
Laboratory driven ionic thermal exchange of alkali feldspars from K to Na produces samples which are strongly luminescent in the ultraviolet region near 320 nm. The sites providing this luminescence are suggested as being correlated with the motion of Na atoms along interface-interphases of the material (i.e. with Na-O bond fracture). The thermoluminescence peaks show multi-order kinetics. Thermal preheatings of low albite sensitize the feldspar lattice with respect to thermoluminescence generated by exposure to UV irradiation and heating produces a strong blue luminescence spread over the range 350 nm to 500 nm band in feldspars. The upper temperature for thermoluminescence in feldspars is ∼300 °C, which is also the point where ionic conductivity of albite (010) begins, but the 300 °C region is also the starting point of a large second glow peak in adularia. Whilst it seems appropriate to link the Na motion to the 350–500 nm emission, it is unclear whether these changes are the result of the large anisotropic thermal vibration of Na atoms or the massive Na jumps that occur when the lattice reaches 300 °C. A speculative model is considered in which the UV TL emissions of natural minerals are linked to different interface-interphases (grain boundaries, exsolution limits, twinning planes, antiphase domains). Increased interface coherency energies are related to the kinetic order and the spectral position of luminescence emission peaks. Received: 3 December 1998 / Revised, accepted: 17 April 1999  相似文献   

4.
Structural energetics of the alkali feldspars have been studied using a “lattice” or structure energy model. Electrostatic energies, U e,for 20 well-refined, non-intergrown alkali feldspars were calculated using Bertaut's (1952) summation procedure and average about ?13,400 kcal/mol; the repulsive energies of the alkali site in each structure (~15 kcal/mol) were calculated using repulsive parameters for K-O and Na-O interactions estimated from bulk modulus data for NaF and KF and the exponential form of the repulsive potential. Using a procedure in which the position of the alkali cation was varied while the oxygen cage was kept fixed, structure energy gradients for the alkali sites of high albite and a hypersolvus Ab42Or58 structure were computed. In both cases, a broad structure energy well, elongated approximately parallel to c and subparallel to the observed split Na positions, was found. In both structures there is a single energy minimum corresponding closely with the observed single alkali positions. Comparison of U e values for the alkali feldspars with different K/Na ratios shows that intermediate compositions are predicted to be less “stable” than either endmember and that the potassic end-member is predicted to be less “stable” than the sodic one, assuming that all other factors contributiong to the free energies of each phase are approximately the same. Comparison of U e values for the high albite and low sanidine structures with different Al/Si distributions and a fixed tetrahedral framework indicates that the ordered charge distributions are 63.0 and 54.8 kcal/mol, respectively, more “stable” than the disordered distributions. Smaller, more realistic energy differences were obtained by using U evalues averaged from four separate calculations with a +3 charge on a different T site in each and with +4 charges on the other T sites. If, in addition, the charges on cations and oxygen are reduced to half their nominal formal charges, in agreement with Pauling's electroneutrality principle and the results of recent molecular orbital calculations on silicates, the predicted electrostatic energy differences are reduced to 3.6 and 1.6 kcal/mol, respectively. These calculations also indicate that the T1O site in the high albite structure energetically favors Al and that the Al/Si distribution determines the Na position within the alkali site.  相似文献   

5.
The bulk compositions of the groundmass alkali feldspar from the Hell Canyon Pluton is 0.146mole% albite. The composition of the outermost zone of the oscillatory zoned plagioclase is 0.686 mole% albite, whereas the most calcic cores have a composition of 0.43 mole% albite. The structural state of the alkali feldspar is near orthoclase. Both composition of coexisting feldspars and structural state of the alkali feldspar are nearly constant throughout the pluton.Exsolved albite in the alkali feldspar have a composition of 0.965 mole% albite and the orthoclase host has a composition of 0.032 mole%. Singe crystal X-ray studies indicate that the albite intergrowths are coherent with the host.Equilibrium temperatures derived from the coexisting feldspar average 554 ° C; about 150 ° C, too low for the minimum solidus temperatures for reasonable emplacement pressures (2 kb). If this minimum solidus temperature is assumed, then the alkali feldspar has lost about 0.15 mole% albite. This loss was most likely caused by hydrothermal solutions associated with the crystallizing magma and equilibrated at about 550 ° C. However, based on the coherent albite intergrowths and the orthoclase structure state it can be inferred that the system was relatively free of volatiles below 500 ° C. Final equilibirium between orthoclase host and albite intergrowths occurred at about 311 ° C.  相似文献   

6.
Etching of alkali feldspar cleavage fragments with hydrofluoric acid vapor, followed by study of the surfaces by scanning electron microscopy (SEM), is a simple and rapid technique for characterizing the microtextures of crypto- and microperthites. This technique has a number of advantages over conventional transmission electron microscopy (TEM) including ease of sample preparation and the large areas of crystals which can be imaged. Alkali feldspars studied by the method can yield important information on the cooling history of igneous and metamorphic rocks, fluid-feldspar interactions and the morphology and microstructures of albite exsolution lamellae. Some of these applications are illustrated by examples of etched crypto- and micro-perthites from the Klokken layered syenite, south Greenland and the Shap granite, north-west England.  相似文献   

7.
Fluid transport on the grain-scale controls many rock properties and governs chemical exchange. Charnockites from Lofoten indicate fluid penetration into ternary alkali feldspars controlled by their microtextures. In a process of fluid infiltration at granulite-facies conditions (∼600°C and 8–11 kbar), tiny pyroxenes enclosed in alkali feldspar reacted to amphiboles, which are always spatially connected to perthitic albite. Investigation of these microtextures by TEM imaging of Focused Ion Beam (FIB) prepared foils revealed that pyroxenes in contact with albite lamellae show dissolution features. An amorphous Fe- and Cl-bearing material interpreted to be a residuum of the percolating fluid was found within albite lamellae. Textures and mineral compositions indicate that a Cl-rich aqueous fluid attacked the lamellae, which then provided pathways for further fluid flow. A correspondence was found between feldspar compositions, their microtexture and their degree of alteration as a result of their permeability for fluids at specific temperatures. Hence, in addition to pressure and temperature, small variations of feldspar composition can strongly influence the fluid permeability of feldspathic rocks under lower crustal conditions.  相似文献   

8.
HOVIS  GUY L. 《Journal of Petrology》1988,29(4):731-763
In order to investigate the thermodynamic properties of alkalifeldspars, three new feldspar ion-exchange series have beensynthesized, two based on monoclinic parent materials havingintermediate degrees of Al—Si order, the other on Amelialow albite. Acid solution calorimetric measurements have beencarried out in 20?1% HF at 50?C under isoperibolic conditionson 30 members of the three series, and compared with revisedvalues for a previously reported sanidine—analbite series.Molar volumes have been determined for all feldspars, and foran additional series based on Eifel sanidine. Enthalpies of K—Na mixing (Aex) calculated from the 50?Cheats of solution are dependent on Al—Si distributionfor both topochemically monoclinic and triclinic alkali feldspars,and in general can be expressed as where NOr and NAb are mole fractions of KAlSi3O8 and NaAlSi3O8,respectively, and Z is an ordering parameter defined as twicethe difference in the mole fraction of Al in the T1 vs the T2tetrahedral sites. Aex values for all but the most disorderedseries are maximized toward sodic compositions, and increaseboth in magnitude and asymmetry as ordering increases. For topochemically monoclinic alkali feldspar series, volumesof K—Na mixing(Vex) are asymmetric with NOr, but withinthe precision of present data do not depend on Al—Si distribution: Microcline-low albite feldspars appear to have volumes of mixingwith the opposite asymmetry, but expressions of for these differ somewhat among various investigators. Since no single thermodynamic mixing property is markedly asymmetricwith respect to composition, the excess Gibbs energies impliedfrom solvus data for alkali feldspars, and maximized at sodiccompositions, are apparently the result of additive effectsof subtle asymmetries in the volumes, enthalpies, and entropiesof K—Na mixing in these minerals. The thermodynamic properties of an alkali feldspar at any compositionare significantly affected by the distribution of Al and Sibetween T1 and T2 tetrahedral sites. The enthalpy of formationat 50?C of a monoclinic potassium feldspar with perfect order(Z=1) differs by 2?19 kcal/mol from one with a completely randomAl—Si distribution (Z=0), while a value of 2?86 kcal/molapplies to analagous sodium end members. ConverselyY-ordering(between T1O andT1m sites) seems to have little or no effecton the enthalpy of formation of either end member, evidencedby the fact that most of the enthalpy differences for the lowmicrocline to sanidine and corresponding low albite to analbitetransitions (1?73 and 2?79 kcal/mol, respectively) can be attributedto Al—Si exchanges between T1 and T2 sites. Observed enthalpydifferences in alkali feldspars are probably related to strainat domain boundaries, whether the domains are extremely small,or somewhat larger as in modulated structures. Neither Z-nor Y-ordering has a substantial effect on the molarvolumes of alkali feldspars.  相似文献   

9.
Solid-state 27Al, 29Si and 23Na MAS NMR spectra have been obtained for an Al,Si ordered low albite to low microcline ion exchange series for which unit-cell parameters and 29Si NMR data have previously been reported. 27Al δi vary continuously with composition from 63.4 (±0.5) ppm for albite to 58.9 (±0.5) ppm for microcline, and parallel the 29Si chemical shifts assigned to the T2m-site. The 27Al and 29Si chemical shifts for this series correlate well with composition-dependent lattice parameters, most notably cell volume and the angle [201]1b. The linewidths of the 29Si and 27Al resonances indicate a significant amount of structural disorder in the intermediate compositions due to Na, K substitution. The 1 σ width of the distribution of average Si-O-T angles for each T-site is estimated to be about 1° for the Or33 sample. The average 23Na δi varies monotonically from -8.5 (±1) ppm for albite to -24.3 (±1)ppm for Or83. Similarly, the average 23Na nuclear quadrupole coupling constant decreases from 2.60 to 1.15 (±0.05) MHz and the asymmetry parameter of the electric field gradient increases from 0.25 to 0.6 with increasing K-content from albite to Or83. The observed variations in the quadrupole coupling parameters are consistent with simple electrostatic calculations. Higher resolution 23Na spectra of the intermediate compositions obtained at 11.7 T indicate the presence of an inhomogeneous linebroadening which is related to the distribution of Na-environments. A model based on a random distribution of local compositions does not simulate the spectra, suggesting that the distribution of Na is skewed toward Na-rich clusters. Observation of the 23Na NMR lineshape of Or49 after short periods of heat treatment indicate that 23Na NMR is very sensitive to the changes in the Na, K distribution accompanying the early stages of exsolution. Reversible changes occur after heating at 530° C for 3 h, whereas heating at 600° C produces no changes, possibly bracketing the position of the coherent spinodal for Al, Si ordered alkali feldspars at this composition.  相似文献   

10.
Mizuhiko Akizuki 《Lithos》1983,16(4):249-254
Spherulites consisting of fibrous alkali feldspar and silica minerals are produced by devitrification of rhyolite glass under hydrothermal conditions. The alkali feldspars (Ab72.5Or23.0An4.5, Ab81.7Or14.0An4.3) in spherulites from two localities in Japan consist of triclinic anorthoclase showing fine cross-hatched twinning and monoclinic sanidine showing fine cross-hatching not attributable to twinning. The cross-hatching, which corresponds to albite and pericline twinning, is produced in the process of transition from a monoclinic to a triclinic phase. The spherulite may develop at a temperature lower than about 200°C because the co-existing silica mineral is not quartz, but metastable tridymite. According to the phase diagram of the alkali feldspars by MacKenzie (1952), the alkali feldspars should have been triclinic during growth. However, the textures show that the alkali feldspar grew as a disordered monoclinic phase. Because of the high growth rate, the Al/Si disordered structure was produced during growth and afterwards transformed into a triclinic structure with cross-hatched twinning.  相似文献   

11.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

12.
Iron-oxide–Cu–Au deposits, particularly those formed in deeper level (plutonic) environments, are commonly characterized by regional scale sodic(–calcic) alteration, which typically formed pre- or syn-Cu–Au mineralization. The sodic(–calcic) assemblages include albite, scapolite, pyroxene, actinolite, apatite, titanite, epidote and calcite. The consistent presence of coexisting hypersaline aqueous and CO2-rich fluids in minerals from sodic(–calcic) alteration and associated Fe-oxide–Cu–Au deposits is the result of unmixing of H2O–CO2–NaCl ± CaCl2–KCl magmatic fluids. Experimental evidence indicates that the Na/(Na + K) ratio of fluids in equilibrium with two alkali feldspars in CO3 2−-bearing parent fluids would be significantly higher than in unmixed chloride-bearing aqueous fluids. Therefore, fluid unmixing caused by decreases in temperature and/or pressure, will result in albitization of wall rocks, as is observed in most deeper level Fe-oxide–Cu–Au deposits. This alteration style may be succeeded by K-feldspathization with decreasing temperature because of the increase in equilibrium Na/(Na + K) in chloride-bearing fluids buffered by alkali feldspars. Received: 26 May 1999 / Accepted: 8 June 2000  相似文献   

13.
We have determined metallographic cooling rates below 975 K for eight main group (MG) pallasites from Ni profiles across taenite lamellae of known crystallographic orientation in metallic regions with Widmanstätten patterns. Comparison with profiles generated by modeling kamacite growth gave cooling rates ranging from 2.5 to 18 K/Myr. Relative cooling rates were also inferred from the sizes of cloudy zone particles in 28 MG pallasites (86-170 nm) and tetrataenite bandwidths in 20 MG pallasites (1050-2170 nm), as these parameters are positively correlated with each other and negatively correlated with the metallographic cooling rates. These three different techniques show that MG pallasites cooled below 975 K at significantly diverse rates. Since samples from the core-mantle boundary should have indistinguishable cooling rates, MG pallasites could not have cooled at this location. Group IIIAB irons, which were previously thought to be core samples from the MG pallasite body, have faster cooling rates (∼50-350 K/Myr) and smaller cloudy zone particle sizes and tetrataenite bandwidths. This shows that IIIAB irons cooled faster than MG pallasites and could not plausibly be from the same body. The absence of related iron meteorites and achondrites and our thermal constraints suggest that MG pallasites cooled at diverse depths in a pallasitic body consisting of well-mixed olivine and metallic Fe-Ni. Such a body may have formed during an impact on a differentiated asteroid or protoplanet that mixed olivine mantle fragments with residual Ir-poor molten metal from the outermost part of a core that chemically resembled the IIIAB core and was ∼80% fractionally crystallized. Separation of the solid core and most of the associated mantle may have resulted from a grazing hit-and-run impact with a larger protoplanet or asteroid. Thermal calculations suggest that the radius of the pallasitic body was 400 km but the likely presence of a regolith would reduce this estimate considerably.  相似文献   

14.
桐庐同熔型火山-侵入杂岩中出现两种碱性长石,一种为无色透明,另一种为微红色,本文利用X射线衍射仪,电子探针,透射电镜对其结构态,成分及出溶微结构进行了对比研究。结果表明,两者成分差别不大,而结构差别较大,无色透明的为透长石,出溶叶片发育;微红色的为正长石或低透长石,出溶结构不发育。而且随着冷却速率的变慢,无色透明碱性长石的Al/Si有序度增大,微红色碱性长石的有序度降低,分析后认为这种共存现象是岩浆混和造成的,从而为桐庐杂岩体的岩浆混合成因提供了有力的证据。  相似文献   

15.
Early stage processes of Mg-rich chlorite (clinochlore) dissolution were examined, focusing especially on the structural modification at grain edges during dissolution. Focused ion beam transmission electron microscopy sample preparation was applied to crystals dissolved in a flow-through reaction system at pH 3.0 and 25°C for 31 days. The obtained Si and Mg dissolution rates are −11.49 and −11.14 (logR, mol/(m2/s)), respectively, implying dissolution is non-stoichiometric. TEM-EDX analyses of dissolved samples reveal the development of 20–50-nm thick amorphous zone at an outermost rim with a chemical gradient of Mg, lower towards the solid surface, and Si enrichment in this amorphous zone. Crystalline material is partially interwoven with amorphous one at the interface between the amorphous and crystalline regions. These results indicate that the amorphous zone was produced by selective leaching of cations except for Si. Chlorite dissolution may proceed via the formation and thickening of leached layer as a by-product of release to solution of Si at slightly slower rate than Mg.  相似文献   

16.
Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst–Einstein equation is compared with previous experimental data.  相似文献   

17.
Pairs of alkali feldspars and plagioclases were synthesized at pressures of 1, 5, and 10 kbar and a temperature of 650° C, to study the composition of coexisting feldspars in relation to pressure. Data were obtained mainly from pairs of feldspars crystallized from dehydrated gels in the presence of an aqueous vapor phase. Data obtained were confirmed by exchange reactions in mixtures of synthetic alkali feldspars and plagioclases. The effects of temperature and pressure on the distribution of albite molecule in coexisting feldspars are opposed to each other. An increase in pressure of 10 kbar equals to a decrease in temperature of about 125–150° C, thus posing severe restrictions to the application of the feldspar geothermometer of Barth. Pairs of coexisting feldspars are discussed in terms of their temperature and pressure of formation.

Dem Direktor des Mineralogisch-Petrographischen Instituts der Universität zu Köln, Herrn Prof. Dr. K. Jasmund, danke ich für sein förderndes Interesse an dieser Arbeit sowie die kritische Durchsicht des Manuskripts. Herrn Prof. Dr. M. Okrusch und Herrn Dr. V. Rudert sei ebenfalls für kritische Anmerkungen zum Manuskript gedankt.

Die Untersuchung wurde mit Hilfe von Personal- und Sachmitteln durchgeführt, die Herrn Professor Dr. K. Jasmund von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt worden waren.  相似文献   

18.
The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ∼8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ∼1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ∼3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ∼4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional ‘internal’ adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pHIEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.  相似文献   

19.
Turbidity is an almost universal feature of alkali feldspars in plutonic rocks and has been investigated by us in alkali feldspars from the Klokken syenite using SEM and TEM. It is caused by the presence of myriads of tubular micro-inclusions, either fluid-filled micropores or sites of previous fluid inclusions, and is associated with coarsening of microperthite and development of sub-grains. Micropores are abundant in coarsened areas, in which porosities may reach 4.5%, but are almost absent from uncoarsened, pristine braind-microperthite areas. The coarsening is patchy, and involves a scale increase of up to 103 without change in the composition of the phases, low albite and low microcline, or in the bulk composition of the crystal. It occurs abruptly along an irregular front within individual crystals, which retain their original shapes. The coherent braid microperthite gives way across the front to an irregular semi-coherent film perthite over a few m and then to a highly coarsened irregular patch perthite containing numerous small sub-grains on scales of a few hundred nm, in both phases. The coarsening and micropore formation occured at a T400°–450° C and it is inferred to have been driven by the release of coherent strain energy, low-angle grain-boundary migration being favoured by a fluid. The patchy nature of the coarsening and the absence of a relationship with initial grain boundaries suggest that the fluid was of local origin, possibly arising in part through exsolution of water from the feldspar. The sub-grain texture and microporosity modify profoundly the permeability of the rock, and greatly enhance the subsequent reactivity of the feldspars.  相似文献   

20.
Lunar plagioclase posed an enigma because optical properties indicate slow cooling while structural properties suggest rapid quenching when compared directly to terrestrial plagioclase. If, however, the An-content is inferred from the Al/Si ratio rather than from the Ca/Na ratio, lunar plagioclase corresponds more closely to normal volcanic plagioclase. The differences between An=4(Al/(Al+Si))-1 and An=Ca/(Ca+Na+K) is caused by substitutions which appear so far to be unique to lunar feldspars. A vector representation of chemical composition makes it possible to single out several substitutions which account for the chemical peculiarities of lunar plagioclase. It permits to assign sites in the structure to various minor elements simply from the chemical analysis without having to rely on sophisticated spectroscopic techniques or an X-ray structure determination. 1. The deficiency in Al+Si (up to 0.06 per formula unit) is compensated for by Fe, Mg, and small amounts of Na or Ca occupying tetrahedral sites. The Ca/Na ratio is increased accordingly to balance the electric charge. This substitution accounts for most of the differences. 2. The vacancycoupled substitution Ca+□ → 2 Na (Weill et al., 1970) is another cause for the increased Ca/Na ratio. 3. The amount of alkali evaporation from plagioclase, if it occurred, is probably small. These unusual substitutions are an expression of special conditions on the moon during the crystallization of plagioclase. Crystallization at high temperatures, rapid cooling, and peculiar magma composition seem to be important factors, but experimental work and detailed study of terrestrial volcanic plagioclase are necessary to interpret the chemical composition quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号