首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
精确标定导航卫星发射天线相位中心对于高精度GNSS(globalnavigationsatellitesystem)数据处理十分重要,对于低轨卫星(lowearthorbit,LEO)精密定轨更是如此。本文以GPS为例,首先探讨了一种基于LEO简化动力学精密定轨残差建模的方法,对导航卫星发射天线相位中心变化(phasecentervariation,PCV)进行标定,与IGS08_1745.atx(internationalGNSSservice,IGS)的PCV比较结果表明,本文所得PCV在天底角低于14°部分与IGS的PCV差异约1mm,并且有效地将天底角(nadirangle)拓展至17°;最后采用多种方案讨论了导航卫星PCV对JASON2精密定轨的影响。结果表明,导航卫星PCV可导致1~2cm的定轨误差。其中利用本文所得PCV可实现3DRMS约3cm、径向约1cm的定轨精度,与采用IGS的PCV定轨精度相当,本方法可为北斗卫星发射天线相位中心变化的标定提供参考。  相似文献   

2.
柳培清 《测绘科学》2016,41(7):166-172
影响GPS精密定轨的因素除卫星轨道初值外还取决于力模型的精度,而地球引力加速度是GPS卫星精密定轨力模型中最为重要的部分。为满足精密定轨需要,该文针对目前各IGS中心所采用的简化动力法,深入研究了GPS卫星精密定轨中的地球引力加速度,详细推导了相关公式并编写程序,先后选取7颗GPS卫星及1颗卫星进行计算验证,结果表明:该文所采用的算法得到的地球引力加速度的计算精度优于10E-11ms~(-2),并且当引力位模型阶数为8~12阶时,引力加速度无明显差异。  相似文献   

3.
利用全球约110个国际GNSS服务(International GNSS Service,IGS)测站2013年全年观测数据,分析和研究了GPS和全球卫星导航系统(global navigation satellite system,GLONASS)卫星偏航姿态对其精密轨道和钟差的影响。结果表明,偏航姿态对不同型号GPS卫星轨道和钟差的影响程度不同,当采用偏航姿态改正后地影期的BLOCK ⅡA型卫星轨道改善可达17 mm,BLOCK ⅡF为近5 mm,而BLOCK ⅡR几乎不受影响。由于偏航姿态对GLONASS-M卫星定轨精度影响较大,因此,当改正偏航姿态后所有GLONASS卫星相对于IGS最终轨道平均一维差异提高10 mm,相对于德国地学中心(German Research Center for Geosciences,GFZ)最终钟差平均标准差提升0.034 ns。  相似文献   

4.
针对GPS卫星精密轨道和钟差插值对GRACE卫星定轨精度影响进行了分析,分别使用IGS(International GNSS Service)30 s间隔钟差、CODE(the Center for Orbit Determination in Europe)30和5 s间隔钟差以及15 min精密星历进行GRACE卫星定轨实验。结果表明:GPS轨道插值精度可以达到cm级,将15 min GPS轨道插值为30 s间隔利用9阶拉格朗日插值定轨结果精度最高,继续增加阶数定轨精度不会增加;利用CODE钟差计算GRACE非差运动学轨道,码伪距结果精度较IGS产品提高6%,载波相位运动学定轨结果和约化动力学定轨结果精度都提高10%左右;5 s间隔卫星钟数据对定轨结果改进并不明显。采用CODE间隔为30 s钟差进行GRACE运动学定轨的计算精度能满足cm级轨道的应用需求。  相似文献   

5.
采用MGEX和IGS跟踪网数据,基于PANDA软件实现了同一时空基准框架下的GPS/GLONASS/BDS/Galileo四系统融合精密定轨,采用单天解边界不符值评定轨道精度。对2014年7月至12月6个多月的GNSS融合精密定轨精度、各单系统独立定轨精度进行比较,结果表明:GPS轨道精度与单系统定轨精度基本相当;GLONASS和BDS轨道精度均优于各单系统定轨精度,尤其是BDS卫星,其GEO、IGSO、MEO卫星平均三维轨道精度分别提高了24%、42%、63%;在多GNSS融合精密定轨中,Galileo卫星径向、法向、切向平均精度分别为9.53、8.20、20.17 cm。动态PPP验证结果表明:相比于单系统解算,多系统组合解可以显著加快收敛速度,同时提高了定位精度。  相似文献   

6.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

7.
卫星定位定轨系统SPODS:理论与测试   总被引:1,自引:1,他引:0  
卫星定位定轨系统SPODS是西安测绘研究所开发的GNSS定位定轨软件。该软件目前能够处理GPS数据,具有高精度GPS定位定轨能力。本文简要介绍SPODS的基本理论和性能测试情况。性能测试使用了2009年1月4日至10日大约127个IGS站采集的GPS数据。结果表明,GPS卫星轨道解与IGS最终轨道的1DRMS差为1.1cm;站坐标日解的重复性,水平分量为1.5mm,高度分量为4.5mm;极坐标和日长变化解与IGS最终产品的一致性,分别为0.025mas、0.093mas和0.013ms/d。  相似文献   

8.
采用IGS全球约110个多模观测站4周的观测数据,在不同采样间隔下进行精密定轨数据处理。分析了不同采样间隔下产品的精度以及数据处理的耗时情况。大量计算结果表明:①随着数据采样间隔的增加,数据处理时间呈线性减少的趋势。本文表明,采用15min采样间隔比5min采样间隔计算效率最多可以提高50%以上。②数据采样间隔的变化对轨道、钟差、ERP参数、参考框架等解算参数的影响很小。当采样间隔为5~10min时,基本上没有影响。为分析不同采样间隔产品对用户定位的影响,采用了全球22个测站4周的数据进行PPP静态定位,并且采用GRACE卫星1周的数据进行运动学精密定轨。采用不同轨道、钟差的静态结果表明,不同产品对水平方向精度的影响小于2mm,高程方向精度的影响小于6mm。GRACE卫星动态定位结果表明,不同产品对各个方向精度的影响小于1.5cm,三维位置的影响小于2cm。本文结论对于当前测站个数250的非差数据处理有参考意义。  相似文献   

9.
针对在多站多星卡尔曼滤波定轨中,粗差探测判断标准选择不合适时会影响卡尔曼滤波解精度的问题,采用放宽粗差探测阈值并在滤波阶段采用抗差估计的方法来控制滤波的精度。利用IGS站和BD站的观测数据,分别计算了GPS、BD卫星单天弧度的定轨结果,并与IGS精密星历、武大精密星历作比较。结果表明,利用抗差卡尔曼滤波方法轨道精度得到了提高。  相似文献   

10.
利用SLR与伪距资料综合定轨   总被引:2,自引:0,他引:2  
以GPS伪距为观测量对GPS35卫星进行定轨 ,然后将SLR与GPS伪距资料综合起来进行定轨 ,并将计算的轨道与IGS精密轨道进行了比较  相似文献   

11.
介绍了非差运动学精密定轨的基本原理,比较分析了精密星历和钟差以及导航星座空间几何构形对GRACE卫星非差运动学定轨的影响。数值分析表明,不同IGS精密轨道对应的GRACE卫星运动学轨道精度相当,而30s间隔和5s间隔钟差对应的径向定轨精度分别为3.8cm和3.4cm,说明高采样率的精密钟差有助于提高非差运动学精密定轨的精度。  相似文献   

12.
定轨是地球探测卫星任务顺利执行的关键。星载GPS技术提供了大量、连续的高低卫星跟踪观测,为低轨卫星精密定轨提供了技术支撑。为了确定CHAMP卫星的轨道,并分析定轨精度,利用CHAMP卫星星载GPS数据,运用零差简动力法进行精密定轨,给出了精密定轨流程。利用实际数据进行了精密定轨实验,结果与德国地学研究中心(GFZ)公布的CHAMP卫星快速轨道(RSO)进行了对比,结果显示:求解轨道可以达到厘米量级。  相似文献   

13.
联合地面和星载数据精密确定GPS卫星轨道   总被引:1,自引:0,他引:1  
给出了联合定轨的数学模型,从6个试验的结果说明低轨卫星的星载GPS观测值对GPS卫星精密定轨的贡献。单天解的结果表明,相对于仅使用43个地面跟踪站的定轨结果,增加3颗低轨卫星的观测数据可以使GPS卫星的轨道准确度平均提高40%,即使仅用21个地面站和3颗低轨卫星也可以使GPS卫星的轨道与IGS最终轨道之差的RMS在5cm左右。  相似文献   

14.
IGS各分析中心提供的北斗精密轨道和精密钟差产品可能因采用不同的天线相位中心模型而存在一定差异,其对精密产品之间的比较以及利用精密产品评估北斗空间信号精度会产生一定影响。首先利用实测观测数据深入分析了采用不同天线相位中心改正模型对精密轨道和钟差的影响规律,在此基础上提出了顾及不同天线相位中心改正模型的北斗空间信号精度评估方法,以欧洲定轨中心、德国地学中心、武汉大学提供的精密轨道和钟差作为参考,对北斗广播轨道、广播钟差以及空间信号精度进行了分析和比较。结果表明,在考虑了卫星天线相位中心改正模型的差异之后,采用不同分析中心提供的北斗精密轨道和精密钟差作为基准评估出的空间信号精度基本一致,地球同步轨道卫星优于1.68 m,倾斜地球同步轨道卫星优于0.78 m,中地球轨道卫星优于0.66 m,验证了所提出的评估方法的正确性。  相似文献   

15.
低轨卫星(LEO)星载观测数据可削弱导航星精密定轨时对地面站的依赖性。分析了在全球测站均匀但不均衡、国内区域测站加入我国南北极测站、仅国内区域测站3种测站布局情况下,加入LEO进行联合定轨时LEO对导航星定轨的增强程度。使用双星GRACE和地面实测数据进行了定轨实验分析,并对轨道进行1 d预报。结果表明,3种测站布局加入LEO后定轨精度一维RMS分别提高了6 mm、2.7 cm和2.5 dm,提高程度分别在19.5%、38.2%、63.1%,区域测站提高最为明显,加入我国南北极测站定轨精度提高至5 cm以内;切向、法向、径向均有相应程度的提高,切向稍大;轨道预报精度分别提高了15.3%、28.9%、66.0%,与定轨精度提高程度相一致。  相似文献   

16.
陆轶材  高成发  郭奇 《测绘通报》2018,(5):11-15,34
鉴于IGS分析中心的框架及轨道产品趋于稳定,提出了基于IGS分析中心产品的轨道综合算法。利用自编算法对IGS各分析中心2017年2月26日—2017年4月8日精密轨道进行综合,获得GPS综合轨道。结果表明,IGS进行轨道综合的9个分析中心中,NGS、GFZ、CODE和ESA 4个分析中心的轨道产品精度相对较好,剩余5个分析中心的轨道产品相对较差;各分析中心与IGS发布的综合轨道间存在框架差异性;使用本文算法计算得到的合成轨道结果与IGS综合轨道作比较,二者三维差异小于5 mm,优于快速星历,证明了本文算法的可行性。  相似文献   

17.
在动力学模型补偿算法的基础上,推导了星载GPS实时定轨的卡尔曼滤波模型。以此为理论基础,自主研制了星载GPS实时定轨软件SATODS。使用CHAMP卫星上的星载GPS实测伪距数据以及GPS卫星广播星历来模拟实时定轨数据处理,并将实时定轨结果与JPL精密轨道进行比较分析。结果表明,在滤波收敛后,实时定轨的轨道精度和速度精度的3dRMS分别可达到1.0m和1.2mm/s,受观测数据的GPS卫星数、PDOP值、粗差数据和数据中断等因素的影响较小。  相似文献   

18.
目前BDS/GPS融合定轨方法主要为"两步法"融合定轨。但在解算过程中,两个系统之间存在系统偏差会使BDS定轨精度下降。为降低融合定轨中系统偏差对轨道精度的影响,采用B1/B3和L1/L2频点组合的非差"一步法"融合定轨的方法,把BDS和GPS卫星置于同一参考框架下进行定轨,并对B1/B3频点的数据进行质量分析。结果分析证明,B1/B3频点数据质量优于B1/B2频点数据质量;"一步法"非差融合定轨获取的BDS轨道精度也优于"两步法"融合定轨获取的BDS轨道精度。其中BDS-MEOIGSO卫星定轨精度优于100 mm;BDS-GEO卫星定轨精度优于1 000 mm。  相似文献   

19.
为确保GNSS精密定轨精度和可靠性,需要顾及站点稳定性和观测质量等信息,在全球范围内均匀选取一定数目的地面基准站。在探讨测站数量和分布对导航卫星精密定轨影响的基础上,针对GNSS定轨地面跟踪站在全球分布不均匀的现状,综合考虑站点几何分布、站点稳定性和观测质量信息,提出基于格网控制概率下的全球测站随机优选方法。该方法综合利用格网方法和随机优化方法,通过全球测站分配一定的概率,进而随机抽样和筛选得到全球均匀分布的测站构型。实验结果显示,该方法在全球范围内选取30个测站时,GPS精密定轨的精度能达到2.15 cm,60个测站时,定轨精度优于1.26 cm;90个测站时,定轨精度可提高到1 cm以内。  相似文献   

20.
多模全球导航卫星系统融合精密定轨   总被引:1,自引:0,他引:1  
基于武汉大学自主研制的卫星导航系统综合处理软件(PANDA),利用全球实测的GPS/GLONASS、GPS/Gali-leo试验卫星(GIOVE)多模接收机数据进行GPS、GLONASS、GIOVE卫星的融合精密定轨理论与方法研究。通过与IGS提供的GPS与GLONASS卫星精密轨道比较、轨道重叠弧段互差以及SLR观测数据检核等多种方法对融合计算的精密轨道精度进行了评定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号