首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
The vertical sediment profiles (10 cm) of the margins of three shallow subtropical lakes (Rio Grande, Brazil) with different trophic states and surrounding areas were evaluated to identify the effects of the allochthonous input on the methane concentration in the sediment. Sediment cores were collected to quantify the organic matter content (OM) and total carbon (TC), total nitrogen (TN), total phosphorous (TP) and methane (CH4) concentrations.The three lakes were distinguished according to the trophic status and classified as oligotrophic, dystrophic and eutrophic. The natural characteristics of the dystrophic and eutrophic lakes have been changed due to the allochthonous input of leaves and twigs (Eucalyptus sp.) and the excreta of birds, respectively. In the eutrophic lake, the allochthonous input contributed to high autochthonous production. The highest values of OM, TC, TN and TP were found in the superficial sediments of the dystrophic and eutrophic lakes. The accumulation of allochthonous organic matter in the littoral zone promoted changes in the vertical sediment profiles and contributed to increases in the CH4 concentrations in the sediment.  相似文献   

2.
Data obtained from Lakes Baldegg and Sempach, two artificially mixed and oxygenated lakes, show that it is technically possible to significantly improve redox conditions, even in large eutrophic lakes. It is discussed why
  • - the well-known release of phosphorus from anoxic sediments does not necessarily result from an abiotic reduction of phosphorus containing iron compounds,
  • - net phosphorus retention by sediments is not simply linearly related to the phosphorus content of a lake,
  • - artificial oxygenation of a previously anoxic hypolimnion does not permanently increase phosphorus retention capacity of lake sediments.
  • From this it is concluded that improvement of hypolimnic redox conditions by lake internal measures such as aeration or oxygenation may accelerate the rate of recovery induced by a reduction of the external phosphorus loading, but that oxygenation per se will hardly be able to cause a reduction of trophic state.  相似文献   

    3.
    基于多个环境变量、以等权或者加权平均法获得的综合营养状态指数(Carlson指数:TSIc;修正后的Carlson指数:TSImc;综合营养状态指数:TLIc;湖库营养状态指数:EIc)得分是当前评价湖泊营养水平的主要依据,其值计算时先要获得基于单个环境变量的营养状态指数分值。若基于总氮(TN)、总磷(TP)和透明度(SD)等的单个理化指标与基于叶绿素a(Chl.a)的营养状态指数得分间存在显著差异,表明依据理化指标的评估结果低估或者高估湖泊的实际营养水平。长江下游分布大量的小型浅水富营养化湖泊,但基于理化指标的评估结果是否会误判湖泊的实际富营养化水平的研究很少。本研究以长江下游的14个浅水富营养化湖泊为对象,于2019 2020年按照季度采集水样并测定水环境因子,分析基于理化指标和基于Chl.a的各营养状态指数(TSI、TSIm、TLI和EI)得分间的差异。结果表明,基于SD的TSI、TSIm、TLI和EI的年均得分均显著高于基于Chl.a的相应营养状态指数的年均值;除TSI(TP)vs.TSI(Chl.a)外,基于TP与基于Chl.a的其他营养指数的年均得分间均有显著性差异;仅TL...  相似文献   

    4.
    Mean dissolved inorganic nitrogen concentrations ([DIN]) in deep, seasonally stratified lakes with comparable DIN inputs can differ by up to a factor of 3 depending on hydraulic and morphometric properties and/or different trophic states of the lakes. In such lakes, net N sedimentation rates were estimated with two independent methods (sediment core analysis and input-output mass balances). They were higher in eutrophic lakes (Mean: 5.1; SD: ± 1.6 g m–2 yr–1; n = 13) than in oligotrophic lakes (1.6 ± 1.0 g m–2 yr–1; n = 3), but independent of [DIN]. Gaseous N loss rates to the atmosphere, as calculated from combined N- and P-mass balances from selected lakes, ranged from 0.9 to 37.4 g m–2 yr–1 (n = 10) and were positively correlated with [DIN]. Reduction of NO 3 - to N2 is assumed to be the main cause for gaseous N losses. A simple one-box mass balance model for [DIN], based on DIN input and rates and kinetics of N removal processes (net sedimentation and gaseous N loss) is proposed, and validated with a data base on [DIN] and DIN input in 19 deep, seasonally stratified lakes of central Europe. The model illustrated that the amount of water loading per unit surface area of a lake (called water discharge height q) is the critical parameter determining mean lake [DIN] relative to mean input [DIN]. Lakes with a q > 50 m yr–1 have average [DIN] similar to the [DIN] of the inflows regardless of their trophic states, because input and outflow exceed lake-internal N removal processes. A high primary production favors DIN removal in lakes with q < 50 m yr–1. It is concluded that measures to decrease primary production, e.g. by means of P removal programs, lead to an increase of [DIN] in lakes.  相似文献   

    5.
    The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

    6.
    In 1969/70, chemical and physical parameters, phytoplankton and recent sedimentation at different levels were investigated in the mesotrophic Lake of Lucerne (Horw Bay) and in the highly eutrophic Rotsee. The rates of sedimentation came to 1277.4 g dry matter/m2·year in Horw Bay and to 879.3 g dry matter/m2·year in the Rotsee. The chemical analysis of sediments included the following components: total organic substance (loss on ignition), organic C, clay minerals (HCl-insoluble fraction), Ca, Mg, P, N, Fe and Mn. The Rotsee is distinguished by higher nutrient concentrations, higher rates of sedimentation (exceptions: clay minerals, Fe, to a certain extent N and Mn) and by a greater biomass of phytoplankton. The distribution and succession of selected species and groups of phytoplankton are discussed, the velocity of sinking, the degradation, the growth dynamics and the measure of trophic state are calculated. For both lakes, a phosphorus and a nitrogen balance have been drawn up. The N:P ratio continually decreases running through the nutrient cycle from the input to the storing into the bottom sediments. The intrabiocoenotic phosphorus cycle in the epilimnion is very intensive and supplies approximately two thirds of the nutrient requirements for primary production in both the Horw Bay and the Rotsee.  相似文献   

    7.
    长江中下游浅水湖泊富营养化发生机制与控制途径初探   总被引:191,自引:22,他引:169  
    秦伯强 《湖泊科学》2002,14(3):193-202
    长江中下游地区是我国淡水湖泊比较集中的地区。该地区绝大多数湖泊为浅水湖泊,所有的城郊湖泊都已经富营养化,其他湖泊的营养状况均为中营养-富营养,处于富营养化的发展中,这些湖泊富营养化的原因同流域上的人类活动有很大的关系。一方面,工业,农业和城市生活污水正源源不断地向湖泊中排放。另一方面,人类通过湖泊围垦、湖岸忖砌,水产养殖等破坏自然生态环境,减少营养盐输出途径。国际上对于浅水湖泊富营养化治理的经验表明,即使流域上的外源污染排放降到历史最低点,湖泊富营养化问题依然突出,其原因与浅水湖泊底泥所造成的内源污染有关。动力作用导致底泥悬浮,,影响底泥中营养盐的释放,也影响水下光照和初级生产力。控制浅水湖泊富营养化,除了进行外源性营养盐控制之外,还必须进行湖内内源营养盐的治理。治理内源营养盐的有效途径是恢复水生植被,控制底泥动力悬浮与营养盐释放。而要进行水生植被恢复,必须进行湖泊生态系统退化机制及生态修复的实验研究。  相似文献   

    8.
    A Recent Contamination Trend: Polycylic Aromatic Hydrocarbons (PAHs) in Aquatic and Terrestrial Sediments Concentrations of polycylic aromatic hydrocarbons (PAHs) measured in aquatic sediments of small, medium‐sized or very large inland lakes, of estuaries as well as in terrestrial sediments from Germany, the UK, Finland, and the USA were plotted in 10 trend curves over the period from 1800 to 1990. The segments of the bore cores were dated for their deposition age. For comparability of the results, the trend is preferentially shown by the guide parameter fluoranthene. Until the 19th century, a constant background value of CFluo = 10…50 μg/kg was observed in all regions. Then a steep increase in concentration followed, reaching in the aquatic sediments a maximum in the period 1940 to 1965, while the individual fluoranthene values ranged widely from 90 to 2400 μg/kg. In several regions, a more or less distinct decrease superseded this maximum, although this development did not appear in terrestrial sediments, in one estuary, and in remote forest lakes in Finland. The trend curves reflect the atmospheric deposition of PAHs in airborne dust and in some cases the import through runoff via rivers. Thus, the sediment profiles depict the development of air pollution by pyrogenic contaminants over more than a century. Sediment profiles from rivers can be used only with a high degree of reservation, because of the irregularity and low representativity of the sedimentation.  相似文献   

    9.
    Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

    10.
    The Gru?a Reservoir (located at 238…269 m a. s. l., volume 64.6 · 106 m3, surface 934 ha, drainage area 318 km2, max. depth 31 m, mean theoretical retention time 22 months) was investigated during the years 1996 to 2001. The obtained values of trophic state parameters (9…200 μg L?1 total phosphorus, 3…99 μg L?1 chlorophyll‐a, and 0.5…2 m transparency) indicate that water of the Gru?a Reservoir is eutrophic according to three types of classification: Carlson, OECD, and Jones and Lee. It was noticed that values of average biomass abundance are large in the Gru?a Reservoir, and they could indicate a richer trophic state. When these indices are cited in connection with parameters of the trophic state, it is apparent that the Gru?a Reservoir can be classified as a eutrophic water on the basis of total phosphorus content of chlorophyll‐a and hypertrophic water with respect to transparency.  相似文献   

    11.
    Physical as well as biochemical processes have a significant influence on the material balance of a lake. Mathematical concepts are developed to treat transport phenomena with which a comparison of different lakes under certain systematic aspects becomes possible. A two-box model consisting of the subsystems epilimnion and hypolimnion, for lakes with one specific limiting nutrient factor (e.g., phosphorus) is employed to evaluate eutrophication processes. In particular, a theoretical basis forVollenweider's [3] empirical relation between specific phosphorus loading and the trophic state is presented. Finally, the inhomogeneous O2-consumption in the deep part of the lake during summer stagnation is calculated with diffusion theory.   相似文献   

    12.
    Temperate and tropical shallow lakes differ in several fundamental aspects with respect to management of eutrophication. High altitude tropical shallow lakes are a special case, showing similarities with temperate and tropical lakes. We studied the ecology of the eutrophic high-altitude tropical lake Yahuarcocha in the Ecuadorian Andes and evaluated the potential of biomanipulation to control eutrophication. With a toxin-producing Cylindrospermopsis bloom, low Secchi depth and low submerged macrophyte cover, Yahuarcocha is clearly in a turbid ecosystem state. Relatively low nutrient concentrations should theoretically allow for a shift to a clear water state through biomanipulation. Top-down control of phytoplankton by zooplankton, however, is complicated by the (1) absence of predatory fish, (2) fish community dominated by small poecelid species, (3) lack of a refuge for zooplankton from fish predation within the macrophytes, and (4) persistent, grazing resistant bloom of the cyanobacterium Cylindrospermopsis. In these aspects, lake Yahuarcocha is more similar to tropical shallow lakes, probably because water temperature is high relative to the mean air temperature and because of the absence of a cold season. The fish and macrophyte communities consisted almost entirely of exotic species. The exotic fish species probably stabilized the turbid state in the lake.  相似文献   

    13.
    The qualitative and quantitative distribution of macrophytic vegetation of Greifensee, one of the most eutrophic lakes of Switzerland, was studied with the help of colour aerial photographs and verifications on the field. This distribution is discussed in relation to the trophic level of the lake and compared with that of several other Swiss lakes.   相似文献   

    14.
    Planktonic algae and epiphyton of the littoral in lake Peipsi, Estonia   总被引:3,自引:0,他引:3  
    The littoral plankton of Lake Peipsi (3555 km2, mean depth 7.1 m) was studied in summer 1980 and 2000–2002, and the epiphyton was studied on two dominating macrophytes, Phragmites australis (Cav.) Trin. ex Steud. and Potamogeton perfoliatus L., in 2000. The purpose of the study was to estimate to what extent the littoral phytoplankton and epiphytic algae (their biomass, chlorophyll a content and dominant species) can be used as a criterion for the trophic state of the lake. In wind-open areas, phytoplankton biomass in the littoral is commonly more than ten times higher than in open water due to the presence of the macroscopic cyanobacterium Gloeotrichia echinulata (J.S. Smith) P. Richter. This alga is abundant in the moderately eutrophic northern lake's part and rare in the strongly eutrophic southern part; hence also biomass in the southern part is considerably lower. In open water, phytoplankton biomass increases southward with increasing trophy. Algal biomass in the littoral depends on wind direction and can change completely in a few days. Epiphyton biomass and Chla content increased southward with increasing trophic state. They both revealed significant Spearman correlations (P < 0.05) with wind index and transparency (negative), and with abundance of the host plant, both reed and pondweed (positive). The phytoplankton biomass of the littoral of the large and shallow Lake Peipsi can not be used as a criterion of trophic state, however, the species composition of the dominants, particularly cyanobacteria, is well applicable for this purpose. The biomass and Chla content of the epiphyton can be used as a criterion for trophic state.  相似文献   

    15.
    Major, trace and rare earth elements were measured in 27 samples of the Middle to Late Permian limestones from the Tieqiao section located on the marginal zone of an isolated platform (Laibin, South China). Shale-normalized REE+Y patterns of all samples show notably negative Ce anomalies (0.21–0.66, average 0.33), slightly positive Gd anomalies (1.08–1.30, average 1.20), and positive Y anomalies with superchondritic Y/Ho ratios (36–91, average 55), which are consistent with those of modern shallow seawater. Their relative LREEs enrichment with higher NdSN/YbSN ratios (0.58–1.80) than those of modern shallow seawater (0.21–0.50) suggests complicated sources of REEs for all samples. Compared with geochemical features of sediments influenced by terrigenous particles and hydrothermal fluids, it is concluded that ambient shallow seawater was the primary source of REEs in these limestones. Comparing the indicators of REE+Y elements (ΣREE, NdSN/YbSN, Ce/Ce*, Gd/Gd*, Eu/Eu* and Y/Ho) in limestones with those in bedded cherts from the Tieqiao section, we consider that limestone and bedded chert have similar sources of REE+Y elements: ambient shallow seawater with more or less hydrothermal fluids. In addition, there is a completely negative correlation between CaCO3 and SiO2 contents in limestones and bedded cherts. These results imply that precipitation of CaCO3 was inhibited by that of SiO2 which was derived mainly from hydrothermal fluid, especially in bedded cherts from the Tieqiao section.  相似文献   

    16.
    The purpose of this study was to measure the phytoplankton production (PP) and bacterial production (BP) simultaneously in seven lakes in the middle Rio Doce basin (southeast Brazil) during the dry and the rainy seasons. Limnological monitoring was conducted from 1999 to 2001 as well as both PP (radioactive carbon fixation) and BP (3H-Leucine incorporation) in four specific depths (100%, 10%, 1% of incident radiation, and aphotic zone). Furthermore, trophic state of the lakes was analyzed, considering the index proposed by Salas and Martino (1991) and Carlson (1977). In general, some parameters increased during the rainy season such as pH, conductivity, chlorophyll and total nitrogen. In the period of 1999/2000, the rain caused PP reduction in the lakes, excepting Carioca and Águas Claras Lake, but in the years 2000/2001, the lakes did not show a similar pattern. In contrast, the rainy season of both years caused an expressive bacterioplankton production enhancing. Using Salas and Martino index, we observed that some lakes were affected by the seasonal runoff, therefore the typologie of these lakes changed from oligotrophic to mesotrophic conditions, otherwise considering the Carlson index all lakes were classified as eutrophic in both dry and rainy seasons. Indeed, Salas and Martino index demonstrated to be more appropriate to determine the trophic status of the lakes. Finally, our data indicate that until now, in spite of the lakes location, protected and unprotected area, the lakes still maintain their natural characteristics.  相似文献   

    17.
    随着经济社会的快速发展和进步,我国湖库水体富营养化情况越来越严重.卫星遥感在水体营养状态监测方面具有重要潜力,但基于卫星遥感的全国范围内湖库水体营养状态监测和分析方面还鲜有研究.本文基于2018夏季的MODIS卫星遥感数据生产FUI指数产品,构建基于FUI水色指数的湖库营养状态评价方法,监测全国范围内144个重点湖库水体的营养状态等级.结果表明:贫营养、中营养、富营养的湖库比例分别为16%、24%、60%;营养状态在空间上分布不均匀,总体上呈现东高西低的现象;东北山地与平原和东部平原湖区以富营养状态水体为主;西部湖库水体以贫到中营养状态为主,尤其是青藏高原湖区贫营养比例比较高;海拔和地表温度等自然因素与工业点源和农业面源污染等人为因素是湖库营养状态的重要影响因素.  相似文献   

    18.
    郑利  徐小清 《湖泊科学》2003,15(3):245-251
    提要沉积物中酸挥发性硫化物(AVS)是硫化物的生成、氧化和扩散等综合作用的反映,有机物的供给、硫酸盐的还原等因素都能影响其分布特征。本文对武汉东湖三个污染程度不同站点的AVS深度分布特征进行了研究,结果表明,AVS含量在一定深度沉积物中具有最大值,东湖沉积物中AVS的深度分布具有两种不同的模式,Ⅰ站和Ⅱ站AVS浓度峰在5cm左右的表层沉积物中,且AVS还原层深度较狭窄,而Ⅲ站AVS浓度峰处于10-20cm深度范围,沉积物中有机质负荷的差异是导致这种分布特征的重要原因。沉积物中有机质含量对AVS的深度分布具有重要影响,高有机质负荷导致AVS浓度峰向表层迁移,且AVS还原层分布于较狭窄的深度范围,对方涛等对流-扩散模型的应用表明,该模型在高有机质负荷沉积物中(Ⅰ、Ⅱ站)AVS深度分布的应用较为理想,然而低有机质负荷沉积物中(Ⅲ站)不能准确反映AVS的深度分布特征,说明其应用范围具有一定的局限性。  相似文献   

    19.

    This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled “The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River”. All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.

      相似文献   

    20.
    The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake(pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated.The results,in the chemical composition,in the mineralogy of the sediment and in the material as obtained from sediment traps,show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin.The sedimentation rate calculated for the lake(2.5×10-2 mg m-2 day-1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world.The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes,and the main fraction of P was found associated with organic matter.There was no control by Fe or Al on P,because both are in solution at pH < 3.0.It was concluded that changes in the natural input of nutrients(derivatives of Copahue volcano fluid,the discharge of sewage,or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake.Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed.The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0.It was concluded that changes in the natural input of nutrients due to:1) the volcanic fluids,2) the increase in sewage charges,or 3) surface runoff upstream,maintain a high trophic state with high concentrations of dissolved P and N-NH4+,although the threshold of neutral pH in the lake is exceeded.This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号