首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 209 毫秒
1.
大陆俯冲化学地球动力学   总被引:37,自引:4,他引:33  
李曙光 《地学前缘》1998,5(4):211-234
碰撞造山带陆壳岩石中柯石英和金刚石的发现证明在碰撞造山过程中,一侧陆壳可俯冲到地幔深度。在这一俯冲过程中,随着温度、压力的升高,俯冲陆壳岩石必然会发生一系列地球化学变化,并会与周围的地幔物质发生不同形式和程度的相互作用。认识这些地球化学变化及相互作用,并以此制约大陆壳俯冲的动力学过程是陆壳俯冲化学地球动力学的主要研究内容和目标。文中以大别山陆壳俯冲为例,总结了陆壳俯冲化学地球动力学研究的主要进展。已有的研究表明在大别山造山带,扬子陆块是在二叠纪末—三叠纪初开始向华北陆块下俯冲,并在230~218Ma达到峰期超高压变质作用。该俯冲板块可能在200~190Ma断离,从而使陆壳俯冲终止。伴有超高压变质作用的陆壳深俯冲作用可能仅在两个较大陆块碰撞时才发生。超高压岩石的折返至少经历了两次快速抬升。最初一次是在陆壳俯冲时期(228~210Ma),超高压岩石由逆冲构造推至中地壳并构造就位于角闪岩相围岩中;第二次是在俯冲板块断离之后(200~190Ma)由浮力推动超高压岩石与其围岩一起快速抬升。在俯冲过程中,俯冲陆壳可以析出流体交代改造上覆楔形地幔。该富集地幔在俯冲陆壳断离之后可发生部分熔融,产生具有Nb,Zr,Ti亏损及?  相似文献   

2.
郑永飞  陈伊翔 《地球科学》2019,44(12):3961-3983
由板块俯冲引发的深部物质循环过程是地球内部的一级运行机制,主宰了地球从内到外的演化进程,是地球科学研究的重要前沿.俯冲带化学地球动力学研究不仅需要确定俯冲带地壳物质再循环的机制和形式,而且需要确定俯冲带动力来源和热体制及其随时间的变化.为了识别不同类型壳源熔/流体对地幔楔的交代作用、寻求板片-地幔界面反应的岩石学和地球化学证据、理解汇聚板块边缘地壳俯冲和拆沉对地幔不均一性的贡献,我们必须将俯冲带变质作用、交代作用和岩浆作用作为一个地球科学系统来考虑.板块俯冲带变质过程中发生一系列物理化学变化,这些变化不但是导致板块进一步俯冲的主要驱动力,同时也控制着释放的熔/流体组成和俯冲到地球深部的物质组成,对俯冲带化学地球动力学过程产生重要影响.地幔楔作为俯冲系统中连接俯冲盘和仰冲盘的关键构造单元,在地球层圈之间物质循环和能量交换等方面起着重要作用.造山带地幔楔橄榄岩直接记录了俯冲带多种性质的熔/流体交代作用,以及复杂的壳幔物质循环过程.俯冲带岩浆岩是大洋/大陆板块俯冲物质再循环的表现形式,这些岩石样品记录了俯冲带从深部地幔到浅部地壳的过程,也为认识地球深部物质循环提供了理想的天然样品.尽管国际上在俯冲带岩石学和地球化学领域针对地球深部过程的研究方面取得了多项重要进展,但由于研究工作缺乏密切的协同配合,包括俯冲带熔/流体的物理化学性质、俯冲带壳幔相互作用的机制和过程、俯冲带幔源岩浆活动的物质来源和启动机制以及深部地幔过程对地表环境的影响等许多关键科学问题尚未得到根本解决.将来的研究需要聚焦俯冲带物质循环这一核心科学问题,进一步查明俯冲带变质作用、交代作用、岩浆作用等过程的各自特征和相互联系,包括挥发性组分在地球深部的迁移过程及其资源和环境效应,着力考察研究相对薄弱的古俯冲带,阐明板块俯冲与地球深部物质循环之间的耦合机制.   相似文献   

3.
地壳深俯冲与富钾火山岩成因   总被引:8,自引:1,他引:8  
富钾火山岩是一类兼具壳幔双重地球化学特征的特殊岩石组合 ,它们不可能由亏损或原始地幔所派生 ,成岩过程中必须有地壳物质的参与 ,将地壳物质引入富钾火山岩成岩过程的主要动力机制即是深俯冲作用。洋壳和陆壳均可以通过俯冲进入地幔 ,俯冲地壳物质析出流体对地幔岩石的交代作用是导致富钾火山岩具特殊地球化学特征的主要原因。根据对大别—苏鲁造山带南北两侧晚中生代富钾火山岩的实例研究 ,表明该区火山岩的形成均受到了俯冲洋壳析出流体的交代作用 ,但造山带北侧富钾火山岩的形成还叠加了俯冲的扬子陆壳析出流体的交代作用 ,是多次富集事件综合作用的结果。文中还对富钾火山岩成因研究中值得进一步深入探索的问题进行了讨论。  相似文献   

4.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

5.
胡航  余星  韩喜球 《地球科学》2022,47(7):2616-2630
大洋地幔内部存在广泛的不均一性,其成因可有多种模式,其中俯冲循环作用对地幔组成的变化具有重要影响. 为明确各循环组分对亏损地幔的改造作用及其在富集源区中的相对贡献,系统总结了不同循环组分(远洋沉积物、俯冲洋壳、陆壳)的平均微量元素特征,计算了各循环组分在俯冲过程中经历的化学变化. 基于改造后的循环组分,开展与亏损地幔源区的混合和熔融模拟. 结果表明,HIMU型玄武岩可以由纯俯冲洋壳(≤10%)与亏损地幔(≥90%)混合形成的源区,经较低程度熔融(0.5%~1.5%)形成;而EMI型玄武岩可以由俯冲洋壳(≤10%)、俯冲剥蚀的下陆壳物质(≤3%)、亏损地幔(≥90%)混合形成的源区,经较低程度熔融(1%~2%)形成;EMII型玄武岩可以由俯冲洋壳(≤10%)、GLOSS-II(全球俯冲沉积物)或上陆壳物质(≤0.8%)与亏损地幔(≥90%)混合形成的源区,经较低程度熔融(1%~1.5%)形成.   相似文献   

6.
超高压变质岩生成问题中解决低密度大陆地壳深俯冲力学机制是一个关键问题。虽然俯冲地幔岩石可以裹携十几千米乃至几十千米尺度的陆壳块体到超高压变质深度,大规模的陆壳深俯冲需要特殊的构造条件。新西兰南岛北端研究表明,俯冲大洋板块能携带宽度达150km左右的窄条陆壳克服浮力达到超高压变质深度,而大陆板块碰撞的主体则浮在岩石圈上形成走滑断层。苏鲁-大别可能曾存在类似的构造条件:苏鲁西侧俯冲海洋板片首先拖曳苏鲁陆壳俯冲到超高压变质深度;随后大别以西俯冲大洋板片拖曳大别至超高压变质深度,而陆壳浮力导致苏鲁陆壳停止俯冲,飘浮的陆壳被北推而形成郯庐断裂;秦岭陆陆碰撞造山后大别超高压陆壳也折返;秦岭作为典型造山带,虽然不排除零星超高压变质的可能,但不具备大规模超高压变质的条件。  相似文献   

7.
通过对下四种环境中岩浆混染作用的实验研究:(1)俯冲板块之上;(2)地幔-陆壳边界界之下和(3)地幔-际壳边界之上;(4)浅部地壳内。用含H2O硅质熔体橄榄岩或角闪岩之间反应的一系列清楚的边界确定了;(1)混染熔体内的扩散断面和(2)二种物质之质的结晶反应带。由含H2O的橄榄岩-英云闪长岩-花岗岩混合物确定了一些相界,这些相界能区分从俯冲板块中产生的并经过地幔上升的熔体的混染程度和与橄榄岩(如堆积  相似文献   

8.
陈仁旭  郑永飞 《地球科学》2019,44(12):4095-4101
俯冲带是地壳与地幔之间物质交换的主要场所.前人对大洋俯冲带壳幔相互作用进行了大量研究,但是对俯冲带壳幔相互作用的物理化学过程和机理仍缺乏明确认识.在大陆俯冲带出露有造山带橄榄岩,它们来自俯冲板片之上的地幔楔,是解决这个问题的理想样品.通过对大别-苏鲁和柴北缘造山带橄榄岩进行系统的岩石学和地球化学研究,发现地幔楔橄榄岩由于俯冲地壳的交代作用而含有新生锆石和残留锆石,它们能为地壳交代作用时间、交代介质来源、性质和组成提供制约.地幔楔橄榄岩在大陆碰撞过程的不同阶段受到了俯冲大陆地壳衍生的多期不同性质流体的交代作用.地幔楔橄榄岩还受到了陆壳俯冲之前古俯冲洋壳衍生流体的交代作用.深俯冲陆壳衍生熔体与橄榄岩反应形成的石榴辉石岩具有高的水含量,能提供高水含量的地幔源区.   相似文献   

9.
对桐柏北部加里东期桃园岩体和黄岗杂岩体的地球化学研究表明,桃园岩体形成于与洋壳消减作用有关的弧后盆地环境,与二朗坪基性火山岩具有相同的岩浆来源。黄岗杂岩岩浆中含有一定比例的陆壳物质,该物质来自俯冲板片上陆壳沉积物的再循环,与二郎坪弧后盆地向北的俯冲消减有密切联系。  相似文献   

10.
板块俯冲起始与大陆地壳演化   总被引:1,自引:0,他引:1  
组成大陆地壳的物质主要来自两个地质过程:地幔柱活动和板块俯冲.目前大多数研究认为板块俯冲起始于30多亿年前.在板块俯冲起始之前,基性的初始地壳物质受热重熔是大陆地壳生长的主要方式,其中,地幔柱活动是关键.地幔柱不仅向地壳输送玄武质岩浆,同时导致已有玄武质岩石和沉积岩通过部分熔融向中酸性岩石转化.当原始岩石圈强度足够大时...  相似文献   

11.
The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative PT paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5–3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10–20 Myr (after 400–600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the PT paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable lid.  相似文献   

12.
Granite subduction: Arc subduction, tectonic erosion and sediment subduction   总被引:10,自引:5,他引:5  
Continental growth has been episodic, reflecting the episodic nature of mantle dynamics as well as surface dynamics of the Earth, the net result of which is exhibited by the present mantle with two huge reservoirs of TTG rocks, one on the surface continents and the other on the D″ layer on the Core-Mantle Boundary (CMB). During the early half of the Earth history, the felsic continental crust on the surface which formed in an intra-oceanic environment has mostly been subducted into the deep mantle, except in the rare case of parallel arc collision. The growth history of continental crust shows that with its simultaneous formation, a considerable amount must have also been subducted. Such ongoing subduction processes can be seen in the western Pacific region, through tectonic erosion, arc subduction, and sediment-trapped subduction.  相似文献   

13.
大陆俯冲过程中的流体   总被引:5,自引:1,他引:5  
李曙光  侯振辉 《地学前缘》2001,8(3):123-129
含水矿物矿物稳定性的实验研究和超高压岩石的同位素地球化学研究表明 ,大陆地壳在俯冲过程中 ,随着变质程度的升高和部分含水矿物的相继分解 ,会有流体释放出来。当俯冲深度接近5 0km ,俯冲陆壳岩石中大量低级变质含水矿物 (如绿泥石、绿帘石、阳起石 )会脱水并从俯冲陆壳逸出形成流体流。这一流体流可溶解带走俯冲陆壳内已从云母类矿物逸出的放射成因Ar及部分U、Pb ,并导致w(U) /w(Pb)升高。这一阶段逸出的流体有可能交代、水化仰冲壳楔 ,为其发生部分熔融形成同碰撞花岗岩或加速山根下地壳的榴辉岩化创造条件。在俯冲深度为 5 0~ 10 0km ,变镁铁质岩石中的角闪石相继分解并释放出H2 O。由于变镁铁质岩石在陆壳中所占比例较少 ,因此 ,这一阶段释放的水不能形成大规模的流体流 ,因而不能使体系内的过剩Ar大量散失 ,但足以形成局部循环 ,加速变镁铁质岩石及其互层或邻近围岩的榴辉岩化变质反应。在俯冲深度 >10 0km的超高压变质阶段 ,仅有少量的含水矿物分解 ,而多硅白云母仍保持稳定。这时俯冲陆壳内只可能有少量粒间水存在 ,从而导致俯冲陆壳与周围软流圈地幔不能发生充分的相互作用。  相似文献   

14.
http://dx.doi.org/10.1016/j.gsf.2016.08.003   总被引:1,自引:1,他引:0  
The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean. However, geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface, suggesting the Hadean crust was lost due to some processes. We investigated the subduction of one of the possible candidates for the primordial crust, anorthosite and KREEP crust similar to the Moon, which is also considered to have formed from the crystallization of the magma ocean. Similar to the present Earth, the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface. In this study, the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations. The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion. We have found that primordial anorthosite and KREEP crust of up to ~50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.  相似文献   

15.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   

16.
全球海山玄武岩数据挖掘研究   总被引:2,自引:0,他引:2       下载免费PDF全文
海山是一个地貌术语,通常分为出露于海平面以上和淹没于以下的两类。海山具有复杂的成因,可产于各种不同的构造环境,其出露的岩性主要有:洋岛玄武岩(OIB)、大洋中脊玄武岩(MORB)、弧后盆地玄武岩(BABB)、岛弧玄武岩(IAB)和大陆边缘玄武岩(CMB)等。本文的研究表明,CMB 和OIB 的地球化学性质大体相似,但是,二者的成因可能既有相似性,也存在某些差异性。OIB 产于板块内部,属于板内岩浆活动的产物,通常认为与“热点”或“地幔柱”有关;而CMB 则可能是古大陆岩石圈与年轻洋壳发生浅部再循环的结果。所以,除“热点”理论外,古大陆岩石圈和年轻洋壳的浅部再循环在海山和洋岛火山形成过程中也扮演了重要的角色。来自IAB 的样品明显亏损Nb、Ta和富集K、Pb、Cs、Rb等大离子亲石元素,表明IAB 的形成与俯冲作用有关。研究表明,全球可能存在3 种类型的热点:第一类是原生的热点,来自深部地幔;第二类是次生的热点,可能形成在地幔柱的浅部,来自超级地幔柱的上部;第三类来自上地幔,可能是大洋岩石圈伸展的产物。因此,海山的成因不可能用地幔柱一种模式予以解释,还应当考虑板块活动中其他各种因素(洋壳再循环、古老陆壳再循环、消减带物质以及水的加入,部分熔融程度、岩浆混合作用、不同地幔端元混合等)的影响。  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987112001065   总被引:2,自引:2,他引:0  
It has been thought that granitic crust,having been formed on the surface,must have survived through the Earth’s evolution because of its buoyancy.At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction,subduction erosion, and continental subduction.Granitic rocks,the major constituent of the continental crust,are lighter than the mantle at depths shallower than 270 km,but we show here,based on first principles calculations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone,and thus can be subducted in the depth range of 270-660 km.This suggests that there can be two reservoirs of granitic material in the Earth,one on the surface and the other at the base of the mantle transition zone(MTZ).The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust.Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle.This could explain the anomalous seismic-wave velocities observed around 660 km depth.The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation,chemical discontinuities between granitic material and the surrounding mantle,or a combination thereof.  相似文献   

18.
Subduction erosion, which occurs at all convergent plate boundaries associated with magmatic arcs formed on crystalline forearc basement, is an important process for chemical recycling, responsible globally for the transport of ~1.7 Armstrong Units (1 AU = 1 km3/yr) of continental crust back into the mantle. Along the central Andean convergent plate margin, where there is very little terrigenous sediment being supplied to the trench as a result of the arid conditions, the occurrence of mantle-derived olivine basalts with distinctive crustal isotopic characteristics (87Sr/86Sr ≥ 0.7050; εNd ≤ −2; εHf ≤ +2) correlates spatially and/or temporally with regions and/or episodes of high rates of subduction erosion, and a strong case can be made for the formation of these basalts to be due to incorporation into the subarc mantle wedge of tectonically eroded and subducted forearc continental crust. In other convergent plate boundary magmatic arcs, such as the South Sandwich and Aleutian Islands intra-oceanic arcs and the Central American and Trans-Mexican continental margin volcanic arcs, similar correlations have been demonstrated between regions and/or episodes of relatively rapid subduction erosion and the genesis of mafic arc magmas containing enhanced proportions of tectonically eroded and subducted crustal components that are chemically distinct from pelagic and/or terrigenous trench sediments. It has also been suggested that larger amounts of melts derived from tectonically eroded and subducted continental crust, rising as diapirs of buoyant low density subduction mélanges, react with mantle peridotite to form pyroxenite metasomatites that than melt to form andesites. The process of subduction erosion and mantle source region contamination with crustal components, which is supported by both isotopic and U-Pb zircon age data implying a fast and efficient connectivity between subduction inputs and magmatic outputs, is a powerful alternative to intra-crustal assimilation in the generation of andesites, and it negates the need for large amounts of mafic cumulates to form within and then be delaminated from the lower crust, as required by the basalt-input model of continental crustal growth. However, overall, some significant amount of subducted crust and sediment is neither underplated below the forearc wedge nor incorporated into convergent plate boundary arc magmas, but instead transported deeper into the mantle where it plays a role in the formation of isotopically enriched mantle reservoirs. To ignore or underestimate the significance of the recycling of tectonically eroded and subducted continental crust in the genesis of convergent plate boundary arc magmas, including andesites, and for the evolution of both the continental crust and mantle, is to be on the wrong side of history in the understanding of these topics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号