首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
波浪操纵说     
(一)通论谈天气学者,挽近可分三派:曰挪威派创自皮叶克纳司(V.Bjrk-ncs),其说以为天气之变化,其主因仅限于对流层内,是为极面学说(Polarfront-Theorie)。曰弗朗克孚(Frankfurt a.M.)派,以为天气之变化,其主因并不在于对流层,而在平流层中。此说导源于费干(H.v.Ficker)及德芳(A.Defant),但发挥而光大之,则为弗朗克孚大学已故教授司徒沸(G.ve)及其助手米盖(R.Mügge),是为平流层操纵说(Stratosphrische Steuerung)。曰来布齐(Leipzig)派,创自魏克孟(L.Weickmann),以为天气之演变,由于大气中波浪之起伏,此种波浪,既可导源于平流层,亦可导源于对流层,是为波浪操纵说(Wcllen-  相似文献   

2.
平流层中所以缺乏有系统之温度坡度者,吾人常以该层空气缺少大量之混合所致。对流层中,风之流动,可使大气之成分,保住常态,及过对流层与平流层之界面,则风速骤减;越界面而上,空气之混合停止,其成分遂因高度而生变异。英格兰之上空,平流层与对流层之界面,在十一公里与十二公里间。至於平流层中空气在何处始停止大量之混合,吾人不得而知。Chapman及Milne以为空气停  相似文献   

3.
利用HALOE资料分析中层大气中水汽和甲烷的分布特征   总被引:3,自引:0,他引:3  
毕云  陈月娟  许利 《大气科学》2007,31(3):440-448
利用1991年12月至2004年5月的HALOE资料,分析了中层大气中微量气体水汽和甲烷的垂直和水平分布特征。垂直分布特征是:水汽混合比在对流层顶和平流层底达到极小值(此极小值区被称为湿层顶),平流层里水汽混合比随高度增加,在平流层上层和中间层低层混合比出现明显的扰动,在中间层顶再次达到极小值,向上混合比又随高度增加。甲烷混合比从100 hPa附近向上混合比一直减少。经向分布特征主要表现为:平流层中下层水汽混合比低值区在热带地区上拱,水汽混合比自低纬向高纬递增;而该气层甲烷混合比则是高值区在热带地区上拱,甲烷混合比自低纬向高纬递减。在低平流层副热带20°S~30°S(20°N~30°N)附近二者混合比水平梯度相对偏大。平流层中上层二者等值线在北半球夏季变成双峰形势,北半球冬季仍是单峰形势。中间层二者都主要表现为冬、夏季分布形势相反。在北半球夏季30°N,平流层中下层水汽和甲烷混合比纬向梯度很小,对流层上层以及中间层二者混合比纬向梯度明显。  相似文献   

4.
热带加热异常影响冬季平流层极涡强度的数值模拟   总被引:1,自引:0,他引:1  
饶建  任荣彩  杨扬 《大气科学》2014,38(6):1159-1171
本文利用大气环流模式SAMIL/LASG,通过选择两种对流参数化方案,研究了热带加热异常对热带外平流层模拟的影响。结果表明,因不同对流参数化方案引起的热带对流加热状况的差异,可显著影响模式对北半球冬季平流层极涡强度的模拟偏差。与采用Manabe对流参数化方案相比,采用Tiedtke参数化方案可以显著改善对平流层极涡强度的模拟,使平流层极涡“过强”及极区“过冷”的模拟偏差得到明显改善。研究其中的影响过程发现,由于Manabe方案最大凝结潜热加热高度过低,在对流层中低层;而Tiedtke方案的最大凝结潜热加热位置在对流层中上层,因而Tiedtke(Manabe)方案时热带大气温度在对流层中上层较为偏暖(偏冷),在平流层低层较为偏冷(偏暖)。自秋季开始,与热带对流层高层温度的暖偏差相联系,热带外对流层高层以及热带平流层低层出现伴随的温度冷偏差;与之对应,平流层中纬度从秋季开始也出现持续的温度暖偏差。另外,随着秋冬季节平流层行星波活动的出现,Tiedtke方案时热带外地区行星波1波的强度也明显强于Manabe方案,使得秋冬季节涡动引起的向极热通量在Tiedtke方案时明显偏强,从而造成了冬季平流层极区温度偏暖、极涡强度偏弱。  相似文献   

5.
1979年以来南极平流层冬季变暖   总被引:2,自引:0,他引:2  
极地气候比其他区域有着更为显著的变化,这不仅反映在极地近地面和对流层,也同样反映在平流层。使用NCEP/NCAR、NCEP/DOE和ERA40月平均再分析资料,研究了南极平流层温度和位势高度的年代际变化趋势。结果表明,自1979年以来在冬季南极平流层存在变暖的趋势。分析NCEP/NCAR和NCEP/DOE再分析资料的结果是变暖主要出现在7—10月,最大增温位于30hPa,27a(1979—2005年)的最大增温幅度超过7℃。分析ERA40的结果是变暖主要出现在6—9月,较NCEP/NCAR和NCEP/DOE早1个月,最大增温位于平流层上层(5和3hPa),23a(1979—2001年)的最大增温幅度超过10℃。在平流层高层,最大增温位于极区中心;在平流层中低层,最大增温位于极区外围偏向澳大利亚一侧。伴随着温度的升高,南极平流层的位势高度也存在升高的趋势。在NCEP/NCAR和NCEP/DOE再分析资料中,最大位势高度升高位于10hPa,27a里的升高幅度超过450m。ERA40给出的结果相对弱一些,23a里的最大升高幅度接近300m。进一步的计算结果表明,进入南半球平流层的波动通量也有增加的趋势,可能是平流层波动增强导致了向南极的残余环流增强,与之相关的极圈内下沉运动也随之增强,下沉运动产生绝热加热,从而造成南极平流层增温和位势高度升高。  相似文献   

6.
使用1979~2005年NCEP/NCAR 再分析数据,分析了北半球平流层中低层(300 hPa至10 hPa)纬向风的季节转换规律,并采用二维空间场相似性方法确定了平流层的季节过渡日期。分析表明,平流层大气环流基本为冬夏二元状态,冬夏转换具有突变性;其季节过渡在纬向是接近同步进行的,而在经向则有时间差异,无论是冬夏转换还是夏冬转换高纬都要早于低纬。在平流层中部(10~70 hPa)季节过渡是自上而向下进行的;而在平流层下部(100~200 hPa)季节过渡的上下传递关系则比较复杂,在不同的纬度带有不同的表现。在北半球热带外地区,平流层中部东风期的起止日期与相似性方法计算得到的平流层季节过渡日期之间具有较好的对应关系,在东风期之前和之后往往各存在持续10天左右的零风—弱风期。  相似文献   

7.
平流层环状模的分类特征及其与对流层的关系   总被引:2,自引:2,他引:0  
采用NCEP/NCAR逐日再分析资料,通过对北半球环状模指数的分析,将平流层异常分为两类:S型和D型,研究了两类平流层异常过程的差异及其与对流层的关系.结果表明,两种类型的异常特征在平流层类似,而主要的差别发生在对流层.在S型平流层异常期间,平流层纬向风异常有随时间向下传播的趋势,对流层表现为与平流层一致连续的纬向风异常;位势高度和温度距平场的分布中,最显著的特征是对流层与平流层呈相当正压结构,极区和中纬度异常表现为反位相的振荡,呈现典型的北极涛动特征.在D型平流层异常期间,平流层纬向风异常随时间向下传播的趋势不存在,另外平流层纬向风异常仅局限在平流层范围内,对流层表现为与平流层相反的纬向风异常;位势高度和温度距平场的分布中,平流层中低层与高层呈现反位相的距平分布,在对流层中低层,温度和位势高度的距平场呈现无规则的分布.  相似文献   

8.
孙淑清 《气象学报》1964,34(4):397-408
本文利用平流层平均温压场的资料,用定常情况下的热力方程计算了1958年1月份北半球平流层各层(10—200毫巴)的冷热源分布。发现平流层中层的冷热源分布和流场一样,是以波数为1,2的超长波系统占优势的。文中还讨论了这些大尺度冷热源的地理分布以及它们和气压系统相互配置的关系。 为了计算平流层中与垂直运动相平衡的加热分量,本文提出了一个把涡度方程自大气顶向下逐层积分的计算垂直运动的新方法。结果证明,这种计算方法对于计算平流层的垂直运动是比较适宜的。  相似文献   

9.
沈熙  徐海明  胡景高 《气象科学》2017,37(6):718-726
本文采用1979—2014年NCEP/NCAR月平均再分析资料、CMAP和GPCP月平均降水资料,分析了北半球平流层极涡崩溃早晚的环流特征及其与南亚降水的关系。结果表明,北半球平流层极涡崩溃时间存在明显的年际变化特征。极涡崩溃偏早(偏晚)年,自3月开始异常信号从平流层向下传播,之后的4月,从平流层到对流层高层极区温度异常偏高(偏低),极涡异常偏弱(偏强),极夜急流异常偏弱(偏强)。结果还表明,5月南亚降水异常与平流层极涡崩溃时间的早晚存在显著相关,5月南亚降水异常与平流层极涡崩溃早晚年平流层异常信号的下传有关。当平流层极涡崩溃偏晚年,4月平流层极区表现为位势高度异常偏低,而中纬度则位势高度场异常偏高,并伴随位势高度异常场的向下传播,5月该位势高度异常场下传至阿拉伯海北部大陆上空对流层顶,形成有利于降水的环流场,导致南亚降水偏多。反之,则相反。  相似文献   

10.
利用ERA-Interim再分析资料,研究1979~2011年间平流层温度与平流层水汽的时空演变趋势。结果表明,平流层纬向平均温度场和平流层水汽的分布随高度、纬度、季节的变化而变化,且二者密切相关,互相影响。过去33a间在热带地区平流层温度均呈上升趋势,在南北半球,温度在平流层中下层呈下降趋势,而在平流层上层呈增温趋势。平流层水汽在不同层次、不同纬度带均呈增加趋势。平流层纬向温度在南北两半球的下降趋势与平流层水汽含量的增加趋势,进一步验证了全球气候正在变暖的事实。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号